• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 259
  • 257
  • 226
  • 76
  • 37
  • 13
  • 10
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 4
  • 4
  • Tagged with
  • 1075
  • 248
  • 173
  • 167
  • 149
  • 129
  • 128
  • 108
  • 107
  • 103
  • 98
  • 86
  • 85
  • 82
  • 81
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Machining dynamics and stability analysis in longitudinal turning involving workpiece whirling

Dassanayake, Achala Viomy 02 June 2009 (has links)
Tool chatter in longitudinal turning is addressed with a new perspective using a complex machining model describing the coupled tool-workpiece dynamics subject to nonlinear regenerative cutting forces, instantaneous depth-of-cut (DOC) and workpiece whirling due to material imbalance. The workpiece is modeled as a system of three rotors: unmachined, being machined and machined, connected by a flexible shaft. The model enables workpiece motions relative to the tool and tool motions relative to the machining surface to be three-dimensionally established as functions of spindle speed, instantaneous DOC, rate of material removal and whirling. Excluding workpiece vibrations from the cutting model is found improper. A rich set of nonlinear behaviors of both the tool and the workpiece including period-doubling bifurcation and chaos signifying the extent of machining instability at various DOCs is observed. Presented numerical results agree favorably with physical experiments reported in the literature. It is found that whirling is non-negligible if the fundamental characteristics of machining dynamics are to be fully understood. The 3D model is explored along with its 1D counterpart, which considers only tool motions and disregards workpiece vibrations. Numerical simulations reveal diverse behaviors for the 3D coupled and 1D uncoupled equations of motion for the tool. Most notably, observations made with regard to the inconsistency in describing stability limits raise the concern for using 1D models to obtain stability charts. The nonlinear 3D model is linearized to investigate the implications of applying linear models to the understanding of machining dynamics. Taylor series expansion about the operating point where optimal machining conditions are desired is applied to linearize the model equations of motion. Modifications are also made to the nonlinear tool stiffness term to minimize linearization errors. Numerical experiments demonstrate inadmissible results for the linear model and good agreement with available physical data in describing machining stability and chatter for the nonlinear model. Effects of tool geometry, feed rate, and spindle speed on cutting dynamics are also explored. It is observed that critical DOC increases with increasing spindle speed and small DOCs can induce cutting instability -- two of the results that agree qualitatively well with published experimental data.
102

Studies on the Machining Characteristics of Diamond Film in Electrochemical Discharge Machining

Lin, Yung-wei 04 August 2006 (has links)
The exceptional physical, chemical, electric, and mechanical properties of ceramics, glass and diamond film make them receive much attention in high-tech industry. Although the electrochemical discharge machining (ECDM) can be used to process those materials, most ECDM are used for machining micro-holes and wire cutting. However, the application on the polishing aspect is still scarce in the literature. In this study, a high-precision dynamic electrical pitting tester with the electrolyte of KOH is employed to investigate the behavior of static electrochemical discharge in terms of supply voltage and gap distance between the steel ball and the diamond film. Furthermore, its machining characteristics are also analyzed. According to the current waveform, the I-V curve is plotted. Results show that the current value of glass is higher than that of diamond film and acrylic. This indicates that the glass is easily to be ionized. According to the observation on the surface of machined diamond film by using SEM, the machined status can be divided into four regimes. In the first regime, the supply voltage is less than 100V where the machined mark on the diamond film cannot be found. Hence, it is called non-machined regime. In the second regime, the supply voltage is in the range between 100 and 107V, where only very slight damage can be observed on the diamond film. Hence, it is called the fine machined regime. In the third regime, the supply voltage is in the range between 107 and 110V, where the machined status on the diamond film is unstable. Hence, it is called the transition regime. In the fourth regime, the supply voltage is larger than 110V, where the machined damage is very heavy. Hence, it is called the rough machined regime. At the supply voltage 105V with the gap less than 80£gm, the annular shape of the machined damage on the surface of the diamond film can be observed. However, when the gap is in the range between 80£gm and 95£gm, the annular shape of the machined damage disappears, but there is still slight damage at the asperity of the diamond film. When the gap is larger than 95£gm, the machined damage is invisible. Hence, the critical gap is defined as 95£gm for the supply voltage of 105V. At the supply voltage of 105V, the gap of 90£gm, and the machining time of 10 min, only the asperity of diamond film shows machined mark, but the surface is flatter. Therefore, it is possible to conduct the fine machining process by using ECDM on diamond film.
103

A Study of High-Speed Machining on Thin-Walled Components

Chiao, Chih-Chung 24 July 2001 (has links)
The high speed machining is now recognized as one of the key manufacturing technologies. It possesses several better characteristics than those of a conventional machining way. For example, low chip load, and low cutting-heat generation can be obtained. It also contributes to high productivity and throughput. In this thesis, the technique about the high speed machining for cutting the aluminum thin-walled components will be discussed. An audio signal measuring system will be established to measure sound pressure for avoiding chatter. Meanwhile, the tool path will also be revealed in this thesis.
104

A Study on the Improvement of Machining Efficiency of Impellers

Chen, Chien-Wen 25 July 2002 (has links)
Impellers are important components in the field of precision machine, energy technology, and aerospace industries. Due to their complex geometries and a higher degree of interference, multi-axis machines are requested to product impellers with desired accuracy. The object of this thesis is to improve the five-axis machining efficiency and accuracy. The involved techniques include: the construction of equal depth and equal width tool paths in rough machining, the methods for interference check and avoidance, error evaluation and control of chordal deviation and scallop height, as well as three and five dimension NURBS (Non-uniform Rational B-splines) tool paths generation by a least squares method.
105

Computational investigation of cutting techniques for integer programming /

Puttapanom, Sutanit. January 2003 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2003. / Typescript. Includes bibliographical references (leaves 110-113). Also available on the Internet.
106

Computational investigation of cutting techniques for integer programming

Puttapanom, Sutanit. January 2003 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2003. / Typescript. Includes bibliographical references (leaves 110-113). Also available on the Internet.
107

Machining chip-breaking prediction with grooved inserts in steel turning

Zhou, Li. January 2002 (has links)
Thesis (Ph. D.)--Worcester Polytechnic Institute. / Keywords: Chip breaking; prediction; turning; grooved inserts. Includes bibliographical references (p. 113-121).
108

Threading and turning of aerospace materials with coated carbide inserts

Okeke, Christopher Igwedinma January 1999 (has links)
The first part of this study involve an evaluation of the performance of TiN and AlZ03 single layer coated cemented carbide tools when threading inclusion modified, 708M40T (En 19T) 817M40T (En 24T) and Jethete steels at high cutting conditions by monitoring tool wear, failure modes, post threading workpiece properties, micro and macro-surface alterations and subsurface microhardness variation of threaded surfaces. Test results show that flank wear was the dominant failure mode, increasing rapidly when machining at the top speed of 225 m min,l due to the high temperature generated which accelerates thermally related wear mechanisms. Tool life, surface finish, hardness variation and component forces during threading were influenced by the geometry of the cutting edge, shape of wear/length of wear along tool nose/cutting edge after threading. Formation of flake-like oxide debris on the worn inserts was found to increase with nickel content in the workpiece material. The Al20) coated carbide inserts with K05 - K20 substrate gave longer tool life, lower cutting forces, better surface finish! damages as well as minimum hardness variation after threading compared with the TiN coated VSX grade with P20-P30 substrates. This can be related to their superior hardness, density, transverse rupture strength as well as the unalloyed WC fine grained substrate (1/lm) in addition to the high hot hardness, excellent chemical stability and low thermal conductivity of the AlZ03 coating at elevated temperatures. A formula for tool rejection was also developed during this study based on the average flank wear (VBb) and growth in thread root (GTR) in order to establish a scientific basis for assessing wear of threading tools. The second part of this study involve single point turning of a nickel base, G263, alloy using rhomboid-shaped PVD coated (TiN/TiCN/TiN, TiAIN and TiZrN) carbide tools at high speed cutting conditions. The worn tool edges revealed adhesion of a compact fin-shaped structure of hardened burrs with saw-tooth edges. The compact structure also formed on the cut surface of the workpiece material. The use of coolant during machining tend to work harden the root of the burr thereby restricting tool entry at the cutting zone leading to the generation of excessive feed force which subjects the tool edge to premature fracture and consequently lower tool life. The serrated/saw-tooth like edges of the burr encourages abrasion wear on the tool flank face and the formation of shallow cavities/lateral cracks where fragments of hardened workpiece material are deposited causing deterioration of the machined surfaces. Tool life was generally influenced by the cutting conditions employed as well as the insert geometry. Increasing cutting conditions (speed, feed and depth of cut) led to chipping of the cutting edge and/or flaking of coating layers as well as notching and fracture of the cutting edge. These failure modes jointly contributed to lowering tool life during machining. The TiN/TiCN/TiN coated KC732 (Tool A) inserts with positive sharp edges gave overall performance at the optimum cutting conditions established under finishing operation. This is followed by the TiN/TiCN/TiN coated KC732 (Tool B), TiAlN coated KC313 (Tool C) and lastly the TiZrN coated KC313 (Tool D) inserts' with razor sharp edges. Under roughing operation, the ranking order of tool performance is the TiZrN coated KC313 (Tool D), TiN/TiCN/TiN coated KC732 (Tool A), TiAlN coated KC313 (Tool C) and lastly the TiN/TiCN/TiN coated KC732 {Tool B). The difference in tool geometry and coating materials contributed to the relative order of tool performance.
109

Virtual three-axis milling process simulation and optimization

Merdol, Doruk Sūkrū 05 1900 (has links)
The ultimate goal in the manufacturing of a part is to achieve an economic production plan with precision and accuracy in the first attempt at machining. A physics-based comprehensive modeling of the machining processes is a fundamental requirement in identifying optimal cutting conditions which result in high productivity rates without violating accuracy throughout the part production process. This thesis presents generalized virtual simulation and optimization strategies to predict and optimize performance of milling processes up to 3-axis. Computationally efficient mathematical models are introduced to predict milling process state variables such as chip load, force, torque, and cutting edge engagement at discrete cutter locations. Process states are expressed explicitly as a function of helical cutting edge - part engagement, cutting coefficient and feedrate. Cutters with arbitrary geometries are modeled parametrically, and the intersection of helical cutting edges with workpiece features are evaluated either analytically or numerically depending on geometric complexity. The dynamics of generalized milling operations are modeled and the stability of the process is predicted using both time and frequency domain based models. These algorithms enable rapid simulation of milling operations in a virtual environment as the part features vary. In an effort to reduce machining time, a constraint-based optimization scheme is proposed to maximize the material removal rate by optimally selecting the depth of cut, width of cut, spindle speed and feedrate. A variety of user defined constraints such as maximum tool deflection, torque/power demand, and chatter stability are taken into consideration. Two alternative optimization strategies are presented: pre-process optimization provides allowable depth and width of cut during part programming at the computer aided manufacturing stage using chatter constraint, whereas the post-process optimization tunes only feedrate and spindle speed of an existing part program to maximize productivity without violating physical constraints of the process. Optimized feedrates are filtered by considering machine tool axes limitations and the algorithms are tested in machining various industrial parts. The thesis contributed to the development of a novel 3-axis Virtual Milling System that has been deployed to the manufacturing industry.
110

An investigation into the effects of hard turning surface integrity on component service life

Smith, Stephen R. 05 1900 (has links)
No description available.

Page generated in 0.0899 seconds