• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Effects of Hydropeaking on Lotic Benthic Macroinvertebrate Assemblages

Garey, Andrew L 01 January 2015 (has links)
The term hydropeaking refers to anthropogenically induced, short-duration, high-magnitude discharge pulses that are generated in lotic systems for electricity production. The practice of hydropeaking produces the largest source of renewable energy worldwide, and its use is projected to increase through the year 2040. The primary objective of this work was to evaluate the effects of hydropeaking on benthic macroinvertebrate assemblages, which are important components of lotic ecosystems. Results of this work show that, across a wide range of impacted systems worldwide, the consistently observed patterns of elevated benthic macroinvertebrate drift in response to hydropeaking pulses are primarily related to the rate at which discharge is increased (i.e., ramping rate) and secondarily to the time between pulses. In addition, it was shown that taxa inhabiting depositional habitat patches (i.e. fine substrates and slow water velocities) were most susceptible to peaking-induced drift, and that these taxa were also those most prevalent in hydropeaking-impacted systems. Collectively, these results suggest that increased pulse ramping rate and the resulting elevated macroinvertebrate drift may be positive selective forces, which benefit populations adapted for life in hydropeaking-impacted lotic ecosystems. These results provide a greater understanding of the factors that are most important for governing the effects of hydropeaking on benthic assemblages.
2

Evaluation of Macroinvertebrates as a Food Resource in the Assessment of Lotic Salmonid Habitat

Weber, Nicholas P. 01 May 2009 (has links)
Criteria used to characterize lotic salmonid habitat are often based on observed correlations between physical habitat characteristics and salmonid abundances. A focus on physical habitat features ignores other habitat components, such as an adequate supply of food that set the physiological limitations on salmonid growth and survival. This study outlines the development of a habitat assessment approach that focuses on how invertebrate food availability interacts with stream temperatures to determine salmonid growth potentials. Abundances of benthic and drifting invertebrate communities, stream temperatures, and juvenile steelhead trout (Onchorhynchus mykiss gairdneri) summer growth rates and abundances were measured within 10 distinct stream segments in central Oregon. Stream temperatures and growth rates were used as inputs for bioenergetics model simulations to produce estimates of O. mykiss summer consumption rates. Measures of invertebrates providing the best description of food availability were chosen based on their ability to explain observed variation in salmonid consumption. Much of the variation in O. mykiss consumption estimates was explained by measurements of total drift biomass along a type II predator response curve. A random effects analysis of variance (ANOVA) was used to partition variation in invertebrate abundances across spatial and temporal scales. Quantification of variation at multiple scales allowed identification of a relevant spatial scale at which to assess macroinvertebrates relevant to salmonid populations, and compare the precision associated with measures of benthic and drifting invertebrate abundances. Results suggested that spatial variation in drifting and benthic invertebrate abundances are greatest at the scale of streams. Total drift biomass and total benthic biomass were more precise at the stream and stream reach scale than drift and benthic density. The information provided by this study will be used to guide the development of sampling approaches that describe invertebrates in a manner more directly related to salmonid production.

Page generated in 0.1006 seconds