• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 108
  • 78
  • 8
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 265
  • 98
  • 75
  • 66
  • 60
  • 43
  • 42
  • 40
  • 38
  • 36
  • 34
  • 32
  • 29
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

An assessment of historical changes in aquatic biota, water and sediment quality within a catchment at a developing urban front

Pappas, Sheena Charmaine 05 1900 (has links)
Degradation of streams in urban-rural fringe regions occurs through complex interactions between hydrological, physical, chemical and biological mechanisms of the stream environment and surrounding landscape. Biological monitoring using macroinvertebrates may capture the complex and cumulative influences of land activity on the stream environment. The Salmon River catchment in the township of Langley, British Columbia, Canada straddles urban and rural environments in the Lower Fraser Valley. To date the Salmon River catchment has been subject to several environmental surveys. Following these earlier investigations, this study quantified relationships between the stream environment and changing land activity, across multiple scales, from 1975 to 2005, using macroinvertebrates as environmental integrators. Current and historical water, sediment, and macroinvertebrate information along with land use and land-cover evaluations were used to quantify relationships between the macroinvertebrate community and land activity in the catchment. Spatial and seasonal results for specific conductivity (a total dissolved ion indicator) and NO������-N and PO����� (nutrient indicators) traced groundwater and overland inputs to the stream environment. Nitrate guideline exceedances occurred at groundwater-influenced sites. Elevated sediment trace metal concentrations and Zn guideline exceedances occurred mid-reach in the catchment. Peak total macroinvertebrate and sensitive taxa abundance occurred mid-reach in the catchment in 2005, while richness and proportional sensitive abundance peaks were seen at groundwater-influenced sites. The dominance of tolerant to moderately pollution tolerant taxa occurred throughout. Despite historical water quality concerns at groundwater-influenced sites, greater shifts in community composition occurred in headwaters regions. Patterns of land use and land cover changed in sensitive areas (i.e. above aquifer and in the headwaters). A greater number of correlations between land activity and macroinvertebrate measures occurred at streams sites with 100 m buffers. The abundance of sensitive taxa positively correlated with the amount of agricultural land use, while rarefaction declined. Several Macroinvertebrate functional feeding groups correlated positively to forest cover, while sensitive taxa abundance and Zn concentrations declined. Results suggest continued water quality and sediment trace metal concerns, while macroinvertebrate results point to nutrient enrichment and greater historical variability in headwaters regions. Agricultural activity appears to have a stronger influence on aspects of the stream environment despite the presence of urban-rural land activity.
12

INDICATOR INVERTEBRATES: DETERMINING CHANGE IN BENTHIC MACROINVERTEBRATE COMMUNITIES DUE TO DEPOSITED SEDIMENT IN THE NORTHERN GREAT PLAINS

2015 April 1900 (has links)
Excessive sedimentation is a major stressor to ecosystem health in freshwater systems globally. Benthic macroinvertebrates are excellent bioindicators of ecosystem health because they have a range of environmental tolerances and are typically associated with certain substrate types. This study tested the hypothesis that sedimentation is a driver of benthic macroinvertebrate communities by determining their responses to increased deposited sediment levels in the Northern Great Plains using both experimental and survey approaches. In both approaches, the effects of deposited sediment were isolated, the responses of specific indicator invertebrates were characterized and finally, indices that commonly respond to deposited sediment were analyzed for their sensitivity. At the community level, the overall multivariate redundancy model was not significant and deposited sediment accounted for only 0.2% of the total variation in species composition in the river survey. Indicator species analysis identified taxa that were associated with sediment impairment classes in both studies. Index sensitivities indicated that Percent Swimmers responded to sediment and can potentially be used as an index of deposited sediment in this region, however this index was not sensitive to sediment in the landscape-scale survey. Although individual taxa that responded to sediment deposition may be used as bioindicators of sediment impairment in further studies, the relatively small effect of sediment at the community level and on univariate composition metrics suggests benthic macroinvertebrate communities are adapted to deposited sediment in the Northern Great Plains.
13

Macroinvertebrate Community Structure and Function in Seasonal, Low-land, Tropical Streams across a Pristine-rural-Urban Land-use Gradient

Helson, Julie Elizabeth 12 December 2013 (has links)
Tropical freshwater ecosystems are understudied and not well understood relative to temperate systems; however, they are becoming increasingly imperiled by escalating anthropogenic impacts. The aim of this thesis was to investigate how tropical freshwater macroinvertebrate communities changed both structurally and functionally over a pristine-rural-urban land-use gradient, in relation to different spatial and temporal scales, as well as to the availability of potential food sources. Fifteen streams in the Panama Canal Watershed were sampled during the dry and wet seasons of 2007 and 2008, for macroinvertebrate communities (benthic and leaf litter), environmental variables, and potential food sources. Along the land-use gradient, in both habitat types, taxon richness, diversity, and evenness all decreased significantly; whereas, abundance increased significantly. For the benthic macroinvertebrate community, unique variation was explained equally well by local (water chemistry and sediment type) and landscape (riparian vegetation and watershed land use) characteristics in the dry season, and landscape characteristics explained slightly more variation in the wet season. Leaf-litter macroinvertebrate community unique variation was better explained by local variables than by landscape variables in both seasons. In terms of potential food resources, fine detritus and inorganic material were the most common across all streams (increased quantities in urban streams) and seasons; whereas, the availability of diatoms and leaf material increased in the dry season. Using gut content analyses, we found that collectors (gatherers and filterers) were by far the most common functional feeding group, increasing in abundance along the land-use gradient. Predators, shredders, and scrapers were all most abundant in pristine streams and decreased along the land-use gradient. Finally, using seven community metrices, a potential biomonitoring tool was developed, the Neotropical Low-land Stream Multimetric Index (NLSMI), which distinguished well among the different levels of stream impairment. This study demonstrated that tropical communities were negatively affected by human land alteration, but that community responses depended on the habitat sampled, the influence of different spatial scales varied between the seasons, and the effect of food resources appeared to be complex. These aspects must be taken into consideration for management decisions and restoration strategies to be effective.
14

Macroinvertebrate Community Structure and Function in Seasonal, Low-land, Tropical Streams across a Pristine-rural-Urban Land-use Gradient

Helson, Julie Elizabeth 12 December 2013 (has links)
Tropical freshwater ecosystems are understudied and not well understood relative to temperate systems; however, they are becoming increasingly imperiled by escalating anthropogenic impacts. The aim of this thesis was to investigate how tropical freshwater macroinvertebrate communities changed both structurally and functionally over a pristine-rural-urban land-use gradient, in relation to different spatial and temporal scales, as well as to the availability of potential food sources. Fifteen streams in the Panama Canal Watershed were sampled during the dry and wet seasons of 2007 and 2008, for macroinvertebrate communities (benthic and leaf litter), environmental variables, and potential food sources. Along the land-use gradient, in both habitat types, taxon richness, diversity, and evenness all decreased significantly; whereas, abundance increased significantly. For the benthic macroinvertebrate community, unique variation was explained equally well by local (water chemistry and sediment type) and landscape (riparian vegetation and watershed land use) characteristics in the dry season, and landscape characteristics explained slightly more variation in the wet season. Leaf-litter macroinvertebrate community unique variation was better explained by local variables than by landscape variables in both seasons. In terms of potential food resources, fine detritus and inorganic material were the most common across all streams (increased quantities in urban streams) and seasons; whereas, the availability of diatoms and leaf material increased in the dry season. Using gut content analyses, we found that collectors (gatherers and filterers) were by far the most common functional feeding group, increasing in abundance along the land-use gradient. Predators, shredders, and scrapers were all most abundant in pristine streams and decreased along the land-use gradient. Finally, using seven community metrices, a potential biomonitoring tool was developed, the Neotropical Low-land Stream Multimetric Index (NLSMI), which distinguished well among the different levels of stream impairment. This study demonstrated that tropical communities were negatively affected by human land alteration, but that community responses depended on the habitat sampled, the influence of different spatial scales varied between the seasons, and the effect of food resources appeared to be complex. These aspects must be taken into consideration for management decisions and restoration strategies to be effective.
15

The application of ecological theory to the remediation of macroinvertebrate communities impacted by acid mine drainage

Kitto, Justin January 2009 (has links)
Numerous streams on the West Coast drain catchments impacted by active or abandoned coal mining areas. Acid mine drainage (AMD) from coal mining can have significant negative effects on stream communities. Changing environmental ethics and regulations mean that mining companies are now encouraged to treat acid mine drainage to enable streams communities to recover. However, remediation efforts have not always been ecologically successful, and mining companies are seeking methods to enhance macroinvertebrate community recovery. Initially, I conducted an extensive survey of 45 streams draining the Stockton Plateau, which is the site of the largest opencast coal mine in New Zealand. I assessed physical and chemical conditions at each site as well as sampling benthic communities. This spatial survey showed streams impacted by acid mine drainage were comprised of chironomids and AMD-tolerant caddisflies such as Psilochorema and stoneflies such as Spaniocercoides. Un-impacted streams typically had a pH of ~5 and were dominated by mayflies (Deleatidium or Zephlebia). Analysis revealed that stream location within the landscape also had a significant influence on macroinvertebrate community composition. Another aspect of stream recovery is the ability of species to recolonise a stream. Therefore, I investigated the flight direction of adult aquatic insects in order to determine longitudinal and lateral flight preferences. No significant differences in flight direction were observed. I also investigated the influence of riparian habitat on lateral dispersal and found that a number of patterns were evident. Scrub vegetation supported higher densities of adult aquatic insects dispersing further from the stream, in contrast to the rapid decline in open bedrock and forest. Furthermore, a comparison between downstream drift and aerial flight showed significantly more individuals where drifting downstream, and this method is liable to provide rapid recolonisation of macroinvertebrates within connected stream networks. At the local scale, organic matter (comprising leaves bags and timber) and artificial moss cover were added to six streams to determine if organic matter and habitat availability would improve macroinvertebrate communities in manipulated streams. A series of floods during the experiment reduced taxonomic richness and density in manipulated streams. Overall, this study has shown that after AMD has been treated, the geographic position of streams within the landscape and lateral dispersal barriers may prevent streams being rapidly re-colonised. Therefore, to promote rapid re-colonisation of macroinvertebrates, stream remediation projects should be targeted at streams that either have un-impacted headwaters or tributaries. This will allow macroinvertebrates to drift in and re-colonise faster. In my experiment I did not find that organic matter significantly enhanced the macroinvertebrate community, but moss additions did provide additional habitat for macroinvertebrates. These results highlight the importance that disturbance events can have on remediation projects.
16

Monitoring the Effectiveness of Streambank Stabilization Projects in Northeast Kansas.

Benitez Nassar, Denisse Maria January 1900 (has links)
Master of Science / Department of Horticulture and Natural Resources / Charles J. Barden / Sedimentation of Federal reservoirs in Kansas has been identified as a critical issue affecting municipal and industrial water supplies, flood control, recreation, and aquatic life. Eroding streambanks are major sources of sediment. Many streambank stabilization projects have been installed over the past 20 years, but there has been very little follow-up monitoring of the effectiveness of these practices. The project goal is to quantify the environmental benefits of government-sponsored streambank stabilization and restoration projects in northeastern Kansas, with a focus on six sites in which tree ad rock revetments were installed. Several of the sites had stabilized reaches and similar un-stabilized reaches as controls. Macroinvertebrate bioassessments were conducted at two sites, on the Delaware River and Plum Creek on the Kickapoo reservation, to compare eroding and stabilized stream reaches. Biotic Index, Biological Monitoring Working Party (BMWP), Average Score per Taxon (ASPT), and Elmidae – Plecoptera – Trichoptera (EIPT) were calculated to compare the stabilized sites performance for water quality and aquatic habitat. The biological indices showed habitat quality on stabilized reaches compared to control reaches. Alfa diversity Shannon-Wiener and Simpson indices were calculated and improve in habitat quality and macroinvertebrate diversity was shown in stabilized reaches. Two new cedar revetments were established in 2017 on Little Grasshopper and Wolfley creeks. These cedar revetment installations resulted in heavy sediment deposits after high flow events with the revetments retaining 121 and 48 cubic meters, respectively. A novel method of using exposed roots was used successfully to quantify erosion on Axtell-Schmidt Dairy farm creek and Wolfley creek, where we found an average yearly erosion of 3.39 and 10.26 cm respectively. Other sites also showed reduced erosion on stabilized reaches and a development of vegetation cover along the riparian areas near the streams. Cedar revetments are shown to be a cost-effective stabilization method on smaller streams. Also, these practices and evaluation methods are a good opportunity for community and stakeholder involvement because it is possible to train community members in the monitoring practices. It is recommended to continue monitoring these sites to compare them with the designated control in order to document long-term effects.
17

The use of Chironomid Pupal Exuvial Technique (CPET) in freshwater biomonitoring: applications for boreal rivers and lakes

Raunio, J. (Janne) 02 January 2008 (has links)
Abstract In this thesis, I used the Chironomid Pupal Exuvial Technique (CPET) to detect anthropogenic impacts and to determine chironomid species composition in boreal rivers and lakes. The main objectives of the thesis research were i) to evaluate the importance of timing of sampling in the use of the CPET method (I, II), ii) to identify chironomid indicators of different environmental conditions (II, III, IV), and iii) to compare performance of the CPET method and more traditional sampling techniques in detecting anthropogenic impacts and chironomid species composition (III, V). I also determined emergence patterns of lotic chironomids in southern Finland (II, IV). Timing of sampling was found to be a critical design factor in the application of the CPET, especially if the trophic gradient between study sites was short. Sampling occasions need to match with the emergence periods of indicator chironomid taxa to ensure the maximum likelyhood of detecting human impacts, if any exist. However, the optimal timing of sampling varies spatially and is dependend on several environmental factors, such as latitude, altitude and trophic gradient. The shift in taxonomic composition of emerging chironomids was found to be especially rapid in spring, and tended to decrease towards autumn. This was probably due to the short emergence periods of some spring-emerging univoltine species, with their annual emergence taking only a few weeks. In contrast to whole genera, the detection of a certain species may require accurate timing of sampling. Thus, among-site differences observed at species level may reflect spatially varying emergence patterns rather than true differences in community composition. On the other hand, because of the among-species variation in species' tolerances towards, for example eutrophication, genus level identification may mask subtle differences between study sites. Nevertheless, for most monitoring purposes genus level identification seems practical and adequate, although species level resolution is desirable. Comparisons of the CPET method and more traditional grab sampling showed that pupal exuvial samples provided a more complete picture of the chironomid fauna, and that this information was obtained cost-effectively. Further, the integrative nature of the CPET was found to be critically important in the assessment of both lotic and lentic habitats. Sampling only a single macrohabitat type may result in biased estimates of the ecological condition of the whole water body. Further, in comparison to profundal grab samples, integrating species from various habitats using the CPET method appeared to have only a minor negative influence on the signal strength. Determination of emergence patterns of lotic chironomids showed that nearly 200 chironomid species occurred frequently in rivers of southern Finland. A major proportion of species richness was accounted for the sub-families Chironominae (emerging mainly during the summer months) and Orthocladiinae (spring and autumn). Overall, these studies demonstrated that the CPET is a cost-effective and sensitive method for the assessment and monitoring of freshwaters, and should be considered as an alternative and/or supplementary tool to more traditional sampling methods.
18

Responses of brown trout and benthic invertebrates to catchment-scale disturbance and in-stream restoration measures in boreal river systems

Louhi, P. (Pauliina) 26 October 2010 (has links)
Abstract Maintaining connectivity in boreal streams by rehabilitation procedures is a challenging task that requires ecological understanding based on empirical research. In this thesis, I examined the effects of stream rehabilitation on densities and growth of brown trout (Salmo trutta L.), as well as on benthic biodiversity. As streams are known to be closely connected to their watersheds, I also examined the effects of watershed drainage activities on stream organisms. The results of this thesis have implications for enhancing salmonid populations, as well for maintaining stream biodiversity. First, regional climatic variability was shown to override local impacts of watershed management on stream biota. This highlights the importance of placing results from local studies in a regional context. Second, increased sedimentation that typically follows anthropogenic actions in the watershed did not only cause direct mortality on the early life stages of brown trout, but also forced them to emerge earlier from gravel and constrained their development. Thus, sedimentation may have far-reaching fitness consequences on juvenile salmonids. Third, while instream rehabilitation did enhance habitat diversity for salmonid fish, there were only marginal effects on juvenile fish and benthic biodiversity. Therefore, the factors limiting stream biota, and obscuring positive effects of rehabilitation, are to be found elsewhere. For this purpose, my thesis offers at least three potential, not mutually exclusive explanations: (i) land use changes have altered watersheds and this can be seen as decreased stream biodiversity that cannot be corrected through local-scale restoration efforts; (ii) a habitat-forming organism group, stream bryophytes, is dispersal limited, slowing down any positive responses to restoration by fish or invertebrates that depend strongly on bryophytes; and (iii) changes to stream habitat heterogeneity caused by channelization for timber floating were rather modest to start with, and therefore any effects of stream habitat rehabilitation on stream biota are likely to be subtle. Based on these findings, I suggest that future restoration efforts should be prioritized according to a comprehensive watershed assessment. Also, monitoring of projects should be more rigorous and preferably multidisciplinary, documenting the ecological as well as hydrological and socioeconomic outcomes of rehabilitation projects.
19

ENERGY FLOW AND MACROINVERTEBRATE PRODUCTION IN PANAMANIAN HIGHLAND STREAMS: ASSESSING THE IMPACTS OF AMPHIBIAN DECLINES

Colon-Gaud, Jose Checo 01 January 2008 (has links)
Amphibian populations around the world have been declining rapidly over the past two decades, particularly in upland regions of the neotropics, where a fungal pathogen that causes chytridiomycosis has decimated many regions. Despite increasing concern over these and other dramatic losses of biodiversity, little information is available on the overall ecological effects of amphibian declines. As part of the Tropical Amphibian Declines in Streams (TADS) project, I quantified major energy fluxes, secondary production, and macroinvertebrate community structure for two consecutive years in four stream reaches in the Panamanian uplands, two with healthy amphibian populations and two that had experienced amphibian declines in 1996-1997. Despite relatively high year-round inputs of allochthonous organic materials, storage of detritus in the stream channels was low compared to streams in temperate regions. Organic matter inputs and standing stocks were similar between pre- and post-decline streams, and did not differ appreciably with season. Seston export was a major energetic flux in these systems, and differences in the nutritional quality (C:N) of seston in pre- and post-decline streams suggested that the loss of tadpoles may decrease the quality of materials exported from these headwaters. At coarse scales (e.g., total abundance) macroinvertebrate assemblages were similar between pre- and post-decline sites, but there were noticeable differences in production and functional and taxonomic structure. Pre-decline reaches had higher shredder production and post-decline streams had higher scraper production. In addition, taxonomic differences between pre- and post-decline streams were also evident, with a shift from dominance of smaller scraper taxa in pre-decline sites (i.e. Psephenus) to larger-bodied scrapers such as Petrophila in post-decline reaches. Filterer production was dominated by hydropsychid caddisflies in pre-decline reaches, whereas black flies dominated filterer production in post-decline reaches. Overall, detritus and detritivores dominated energy flow in all study reaches. However, scrapers were well represented in these systems and appeared to be food-limited, particularly in pre-decline reaches where grazing tadpoles were still abundant. During the second year of my study, predicted amphibian declines began at the pre-decline site. The loss of amphibians through this year resulted in subtle shifts in macroinvertebrate functional and taxonomic structure, which correlated with changes in available food resources. Some grazing mayflies responded positively to declining tadpole populations and subsequent increased periphyton resources, suggesting a potential for some degree of functional redundancy in these systems. However, other grazers, such as the water penny beetle Psephenus, showed no response during the period of study. My results indicate that responses of remaining consumers to tadpole declines in streams may not be evident at some coarse scales (e.g., total abundance, biomass). However, differences in secondary production at the community and the functional level, along with assemblage structure changes were evident, with some individual taxa responding relatively quickly. Long-term studies in these same stream reaches will further illuminate the ultimate ecological consequences of these dramatic and sudden losses of consumer diversity.
20

The Role of Macroinvertebrates and Gut Microbiomes in Freshwater Ecosystem Biogeochemistry and Bacterial Community Composition

Bhattacharyya, Sohini 20 January 2022 (has links)
No description available.

Page generated in 0.0914 seconds