• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phenotypic Characterization of Alveolar Macrophages in a Murine Model of Hemorrhagic Shock Induced Acute Respiratory Distress Syndrome

Dana, Safavian 18 February 2014 (has links)
Acute Respiratory Distress Syndrome is a late cause of morbidity and mortality following hemorrhagic shock and resuscitation. Previous work in our laboratory showed that alveolar macrophages were primed for increased responsiveness to lipopolysaccharides, as evidenced by augmented inflammatory cytokine production. Recent studies have shown that macrophages can be polarized into two phenotypes, namely pro-inflammatory M1 and anti-inflammatory M2 macrophages, in response to various environmental cues. The major hypothesis to be tested in this thesis is that HS/R shifts the M1/M2 polarization of alveolar macrophages to favour a pro-inflammatory milieu in the lung. A biphasic shift in the phenotype of alveolar macrophages in response to HS/R characterized by an early reduction of M2 cells followed by a late up-regulation of M1 macrophages was observed. The administration of M2- polarizing PPARγ agonists prior to HS/R restored the M1/M2 balance of alveolar macrophages and reduced lung injury.
2

Phenotypic Characterization of Alveolar Macrophages in a Murine Model of Hemorrhagic Shock Induced Acute Respiratory Distress Syndrome

Dana, Safavian 18 February 2014 (has links)
Acute Respiratory Distress Syndrome is a late cause of morbidity and mortality following hemorrhagic shock and resuscitation. Previous work in our laboratory showed that alveolar macrophages were primed for increased responsiveness to lipopolysaccharides, as evidenced by augmented inflammatory cytokine production. Recent studies have shown that macrophages can be polarized into two phenotypes, namely pro-inflammatory M1 and anti-inflammatory M2 macrophages, in response to various environmental cues. The major hypothesis to be tested in this thesis is that HS/R shifts the M1/M2 polarization of alveolar macrophages to favour a pro-inflammatory milieu in the lung. A biphasic shift in the phenotype of alveolar macrophages in response to HS/R characterized by an early reduction of M2 cells followed by a late up-regulation of M1 macrophages was observed. The administration of M2- polarizing PPARγ agonists prior to HS/R restored the M1/M2 balance of alveolar macrophages and reduced lung injury.
3

EFFECT OF AZITHROMYCIN ON MACROPHAGE PHENOTYPE DURING PULMONARY INFECTIONS AND CYSTIC FIBROSIS

Cory, Theodore James 01 January 2011 (has links)
Azithromycin improves clinical outcomes in patients with cystic fibrosis (CF), specifically in patients infected with Pseudomonas aeruginosa. Azithromycin shifts macrophage programming away from a pro-inflammatory classical (M1) phenotype, and towards an anti-inflammatory alternative (M2) phenotype; however, little is known about this mechanism, nor of its impact upon immune response to pulmonary infection. We set out to determine the mechanism by which azithromycin is able to alter macrophage phenotype, and assess the effect of azithromycin induced macrophage polarization on inflammation during pulmonary infections. Utilizing macrophage cell culture, we found that azithromycin increased IKKβ, a signaling molecule in the NFκB pathway, which likely is altering macrophage programming. Using a Pseudomonas infection model in mice that lack physiologic alternative macrophage activation, we showed that azithromycin’s ability to alter macrophage function and decrease lung damage was independent of interleukin control of macrophage programming. Azithromycin increased fibrotic protein production both in vivo and in vitro, but blunted immune-driven fibrotic damage. We extended our study to patients with CF, describing gene expression in macrophages isolated from sputum samples. We found markers consistent with a shift toward M2 polarization in these patients. These data suggest potential mechanisms by which azithromycin benefits patients with CF.
4

Fibrosis development requires mitochondrial Cu,Zn-superoxide dismutase-mediated macrophage polarization

He, Chao 01 May 2014 (has links)
H2O2 generated by alveolar macrophages has been linked to the development pulmonary fibrosis, but little is known about its source, mechanism of production and exact role upon alveolar macrophage activation. In this study, we found that alveolar macrophages from asbestosis patients spontaneously produce high levels of H2O2 and have high expression of Cu,Zn-SOD. Cu,Zn-SOD localized to the mitochondrial intermembrane space (IMS) in asbestosis patients and asbestos induced translocation of Cu,Zn-SOD to the IMS. This process was unique to macrophages and dependent on functional mitochondrial respiration. The presence of at least one of the conserved cysteines was required for disulfide bond formation and mitochondrial translocation. These conserved cysteine residues were also necessary for enzyme activation and H2O2 generation. Cu,Zn-SOD-mediated H2O2 generation was inhibited by knockdown of the iron-sulfur protein, Rieske, in complex III. The role of Cu,Zn-SOD was biologically relevant as Cu,Zn-SOD-/- mice generated significantly less H2O2, had less oxidative stress, and were protected from developing pulmonary fibrosis. This protective mechanism is closely related to the alveolar macrophage activation and polarization in Cu,Zn-SOD-/- mice, as they had a dominant pro-inflammatory phenotype. Macrophages not only initiate and accentuate inflammation after tissue injury, but they are also involved in resolution and repair. The pro-inflammatory M1 macrophages have microbicidal and tumoricidal activity, whereas the M2 macrophages are involved in tumor progression and tissue remodeling, and can be pro-fibrotic in certain settings. We demonstrate that overexpression of Cu,Zn-SOD promoted macrophages polarization into an M2 phenotype. Furthermore, overexpression of Cu,Zn-SOD in mice resulted in a pro-fibrotic environment and accelerated the development of pulmonary fibrosis. The mechanism which Cu,Zn-SOD-mediated H2O2 utilizes to modulate macrophage M2 polarization is through redox regulation of a critical cysteine in STAT6. The polarization process, at least partially, was regulated by epigenetic modulation. We show that STAT6 was indispensable for Cu,Zn-SOD-mediated M2 polarization. STAT6 upregulated Jmjd3, a histone H3 lysine 27 demethylase, and initiated M2 gene transcriptional activation. Targeting STAT6 with leflunomide, which can reduce cellular ROS production and inhibit STAT6 phosphorylation, abolished M2 polarization and ameliorated the fibrotic development. Taken together, these observations provide a novel mechanism for the pathogenesis of pulmonary fibrosis whereby the antioxidant enzyme Cu,Zn-SOD plays a paradoxical role. The study highlights the importance of mitochondrial Cu,Zn-SOD and redox signals in macrophage polarization and fibrosis development. These observations demonstrate that the Cu,Zn-SOD-STAT6-Jmjd3 pathway is a novel regulatory mechanism for M2 polarization and that leflunomide is a potential therapeutic agent in the treatment of pulmonary fibrosis.
5

THE SPICY, THE EVERLASTING AND THE UNEXPECTED: INVESTIGATING THREE COMPOUNDS THAT SUPPRESS MACROPHAGES AND MYOFIBROBLASTS TO REDUCE BIOMATERIAL-INDUCED FIBROSIS

Truong, Tich 06 1900 (has links)
Capsaicin, prostaglandin E2 (PGE2) and polydopamine (PDA) were used to target macrophage and myofibroblast activity to reduce biomaterial-induced fibrosis. The lifetime and efficacy of implantable biomedical devices are determined by the foreign body response. Immediately after implantation, proteins nonspecifically adsorb onto the material and initiate inflammation. Macrophages recruited to the site can differentiate into M1 and M2 phenotypes and upregulate inflammation and fibrosis which interferes with the intended function. M1 macrophages secrete pro-inflammatory mediators that induce chronic inflammation and promote myofibroblast differentiation while M2 macrophages are wound healing cells that suppress inflammation and regulate fibroblast activity. The fibrotic tissue is developed by myofibroblasts which produce collagen in an unregulated fashion. Collagen thickening and biomaterial encapsulation decreases efficacy and sensitive of biomedical devices. We investigated the in vitro and in vivo effects of capsaicin, PGE2 and polydopamine surface modification on macrophages and myofibroblasts. Capsaicin and PGE2 reduced poly(lactic-co-glycolic) acid (PLGA)-induced fibrosis by promoting M2 macrophage phenotype to secrete anti-inflammatory IL-10 and suppressing myofibroblast marker α-smooth muscle actin (α-SMA). Capsaicin decreased collagen by 40% and upregulated IL-10 secretion by 35% while PGE2 reduced collagen by 55% after 14 days of implantation and 40% less collagen after 42 days. PDA was used to bind an anti-fibrotic compound to the surface of a poly(dimethyl siloxane) (PDMS-PDA) to reduce fibrosis. However, PDMS-PDA controls gave an unexpected result by reducing fibrosis to the same extent as anti-fibrotic compound bound PDMS- v PDA. PDA modification reduced cellularity by 50% and significantly decreased collagen thickness by 30%. Overall, our results showed that biomaterial-induced fibrosis can be reduced by promoting M2 macrophage activity and inhibiting myofibroblast differentiation. This research demonstrates three compounds that have potential to reduce fibrosis and extend the lifetime and efficacy of implantable biomedical devices. / Thesis / Master of Applied Science (MASc) / Capsaicin, prostaglandin E2 (PGE2) and polydopamine were used to reduce scar tissue development around implanted polymers. Biomedical devices implanted in the body can undergo severe scar tissue formation, or fibrosis, and fail. Fibrosis is described by the accumulation of collagen and encapsulation of an implanted polymer. Macrophages regulate fibrosis by secreting pro-fibrotic compounds and myofibroblasts produce unregulated amounts of collagen. In this thesis, capsaicin, PGE2 and polydopamine were incorporated into implants to target macrophage and myofibroblast activity and reduce fibrosis in mice. Capsaicin and PGE2, released from a degradable polymer, altered macrophages to secrete anti-fibrotic compounds and decreased collagen by 40% and 55%, respectively. Polydopamine surface modified implants gave an unexpected result and suppressed overall cell activity to reduce fibrosis by 30%. The research conducted shows the potential of these compounds to reduce fibrosis and extend the lifetime of implantable devices.

Page generated in 0.0795 seconds