1 |
Využití japonských hlavolamů ve výuce matematiky na 1. stupni základní školy / Use of Japanese Puzzles in Teaching Mathematics at Primary SchoolPěničková, Barbora January 2012 (has links)
This diploma thesis deals with Japanese puzzles and their use in teaching mathematics at primary school. Its main aim is to verify if it is possible for the pupils to achieve comparable results with older pupils and adult Sudoku solvers supposing that these learners are systematically guided through an escalating set of Sudoku puzzles. The theoretical part of the thesis is focused on the history of Sudoku, several strategies of its solving, other examples of Japanese puzzles and also on Sudoku in the context of its use at school. The practical part describes a series of experiments with pupils of the first, later second grade of a primary school, which were conducted in order to verify the hypothesis of this thesis.
|
2 |
Historické početní postupy a jejich aplikace ve výuce / Historical development of numerical methods and computational techniques, from the perspective of mathematics education in elementary school.DIVÍŠKOVÁ, Michaela January 2018 (has links)
In my diploma thesis I deal with historical numerical procedures and their application in teaching. In a total of eight chapters, I describe counting techniques from history, such as magic squares, interesting counting algorithms, unconventional divisibility criteria, ancient numeration techniques, golden ratio, figurate numbers, and graphic papers. I deal with the use of historical numerical methods in teaching in the final chapter. This chapter contains eight worksheets and activity suggestions with methodical commentary.
|
3 |
Complexité de Kolmogorov et corrélations quantiques; étude du carré magiqueBerthelette, Sophie 08 1900 (has links)
L'informatique quantique, ce surprenant mariage entre informatique et physique, est un domaine riche en nouvelles idées, autant pour la technologie future qu'une meilleure compréhension de notre univers. C'est le phénomène de l'intrication qui est au coeur de cette nouvelle façon de voir l'information.
Ce mémoire porte sur l'étude des corrélations quantiques observées dans la nature, mises de l'avant, entre autres, par John Bell. Plus particulièrement, deux jeux non signalants, dans lesquels ces corrélations se manifestent, sont étudiés: le jeu CHSH, probablement l'exemple le plus connu à ce jour, et le jeu de pseudotélépathie du carré magique. Pour ce faire, deux points de vue seront adoptés, soit probabiliste et algorithmique. Le premier est motivé par la prédiction (ce qui aurait pu se passer), tandis que le second s'intéresse à l'information intrinsèque contenue dans un objet (ce qui s'est passé). Les concepts «aléatoire» et «information» seront donc abordés premièrement à la Shannon (approche probabiliste) puis à la Kolmogorov (approche algorithmique). C'est la complexité de Kolmogorov qui sera utilisée pour quantifier l'information de façon factuelle. De plus, le cas particulier où plusieurs répétitions d'un jeu sont jouées en parallèle dans un monde classique sera examiné. Le théorème des répétitions parallèles, résultat important sur le sujet démontré par Ran Raz, sera présenté et utilisé par la suite dans l'étude algorithmique des jeux CHSH et du carré magique. / Quantum information, this intriguing marriage between computer science and physics, is a
promising field of research for future technologies as well as a better understanding of our
universe. Entanglement is at the very heart of this new way of understanding information.
This thesis focuses on quantum correlations that are observed in nature. They have been
studied in great detail by, among others, John Bell. More specifically, two non-signaling
games, in which these correlations arise, are studied: the CHSH game, which is probably
the best-known example of such games, and the magic square pseudotelepathy game. To
do so, two points of view will be adopted: probabilistic and algorithmic. The first is
motivated by prediction (what could have happened) and the second focuses on the intrinsic
information about an object (what happened). Therefore, the concepts of randomness and
information are first addressed from Shannon’s point of view (probabilistic approach) and
second from Kolmogorov’s point of view (algorithmic approach). Kolmogorov complexity is
used to quantify information in a factual way. Furthermore, the particular case in which
multiple repetitions of a game are played in parallel in a classical world is considered.
The parallel repetition theorem, an important result on the subject proven by Ran Raz,
is presented and used in the algorithmic study of the CHSH game and the magic square game.
|
Page generated in 0.0592 seconds