• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and Control of a Magnetic Drug Delivery System

Afshar, Sepideh January 2012 (has links)
Therapeutic operation risk has been reduced by the use of micro-robots, allowing highly invasive surgery to be replaced by low invasive surgery (LIS), which provides an effective tool even in previously inaccessible parts of the human body. LIS techniques help delivering drugs effectively via micro-carriers. The micro-carriers are divided into two groups: tethered devices, which are supported by internally supplied propulsion mechanism, and untethered devices. Remote actuation is the critical issue in micro-device navigation, especially through blood vessels. To achieve remote control within the cardiovascular system, magnetic propulsion offers an advantage over other proposed actuation methods. In the literature, most research has focused on micro-device structural design, while there is a lack of research into design and analysis of combined structure and control. As the main part, integrating the principle of electromagnetic induced force by feedback control design will lead to the desired automatic movement. An actuator configuration should thus first be designed to initiate the desired force. The design is basically defining the type and placement of a set of coils to achieve an operational goal. In this project, the magnetic actuation is initiated by a combination of four electromagnets and two sets of uniform coils. Preliminary studies on 2D navigation of a ferromagnetic particle are used to show the effect of actuator structure on controller performance. Accordingly, the performance of the four electromagnets combination is compared to the proposed augmented structure with uniform coils. The simulation results show the improved efficiency of the augmented structure. In more general cases, the arrangement and number of electromagnets are unknown and should be defined. An optimization method is suggested to find these variables when the working space is maximized. Finally, the problem of robust output regulation of the electromagnetic system driven by a linear exosystem, is also addressed in this project. The exosystem is assumed to be neutrally stable with unknown frequencies. The parallel connection of two controllers, a robust stabilizer and an internal model-based controller, is presented to eliminate the output error. In the latter one, an adaptation is used to tune the internal model frequencies such that a steady-state control is produced to maintain the output-zeroing condition. The robust regulation with a local domain of convergence is achieved for a special class of decomposable MIMO nonlinear minimum-phase system. The simulation results show the effectiveness and robustness of this method for the electromagnetic system when two different paths are considered.
2

Modeling and Control of a Magnetic Drug Delivery System

Afshar, Sepideh January 2012 (has links)
Therapeutic operation risk has been reduced by the use of micro-robots, allowing highly invasive surgery to be replaced by low invasive surgery (LIS), which provides an effective tool even in previously inaccessible parts of the human body. LIS techniques help delivering drugs effectively via micro-carriers. The micro-carriers are divided into two groups: tethered devices, which are supported by internally supplied propulsion mechanism, and untethered devices. Remote actuation is the critical issue in micro-device navigation, especially through blood vessels. To achieve remote control within the cardiovascular system, magnetic propulsion offers an advantage over other proposed actuation methods. In the literature, most research has focused on micro-device structural design, while there is a lack of research into design and analysis of combined structure and control. As the main part, integrating the principle of electromagnetic induced force by feedback control design will lead to the desired automatic movement. An actuator configuration should thus first be designed to initiate the desired force. The design is basically defining the type and placement of a set of coils to achieve an operational goal. In this project, the magnetic actuation is initiated by a combination of four electromagnets and two sets of uniform coils. Preliminary studies on 2D navigation of a ferromagnetic particle are used to show the effect of actuator structure on controller performance. Accordingly, the performance of the four electromagnets combination is compared to the proposed augmented structure with uniform coils. The simulation results show the improved efficiency of the augmented structure. In more general cases, the arrangement and number of electromagnets are unknown and should be defined. An optimization method is suggested to find these variables when the working space is maximized. Finally, the problem of robust output regulation of the electromagnetic system driven by a linear exosystem, is also addressed in this project. The exosystem is assumed to be neutrally stable with unknown frequencies. The parallel connection of two controllers, a robust stabilizer and an internal model-based controller, is presented to eliminate the output error. In the latter one, an adaptation is used to tune the internal model frequencies such that a steady-state control is produced to maintain the output-zeroing condition. The robust regulation with a local domain of convergence is achieved for a special class of decomposable MIMO nonlinear minimum-phase system. The simulation results show the effectiveness and robustness of this method for the electromagnetic system when two different paths are considered.
3

Desenvolvimento de um atuador magnetico para excitação sem contato de sistemas rotativos / A magnetic actuator development for contactless excitation in rotor systems

Furtado, Rogerio Mendonça 12 August 2018 (has links)
Orientadores: Katia Lucchesi Cavalca, Rainer Nordmann / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-12T14:22:54Z (GMT). No. of bitstreams: 1 Furtado_RogerioMendonca_D.pdf: 2160863 bytes, checksum: 4c54a9ce5fcded113554dc24287e591a (MD5) Previous issue date: 2008 / Resumo: Um atuador magnético como fonte de excitação em sistemas rotativos é desenvolvido para emprego na análise modal e em outros estudos, envolvendo a excitação sem contato. Embora os sistemas magnéticos para aplicação de forças em máquinas rotativas sejam empregados com alto desempenho (como por exemplo os mancais magnéticos), o desenvolvimento de um sistema simples, para aplicações laboratoriais, se apresenta como uma contribuição experimental útil, para ser empregado numa bancada de testes utilizada no desenvolvimento de projetos de máquinas rotativas. O conceito apresentado é simples, mas permite a excitação externa sem contatos ou mesmo o controle das amplitudes de vibração, quando associado a um sistema de controle. Contudo, a calibração e o estudo do desempenho dinâmico do sistema não são análises simples. Neste sentido, o trabalho apresenta uma experiência prática e discussões sobre o desenvolvimento do atuador magnético utilizado para testes em máquinas rotativas. A influência da corrente elétrica, entreferro, superfície do pólo do atuador e também da freqüência de excitação, são apresentadas. A força magnética é estimada, baseando-se na medida da densidade de fluxo magnético, medida por sensores hall. / Abstract: A magnetic actuator as excitation source in rotating systems is developed, in order to accomplish modal analysis and other studies involving contacless excitation. Although the use of magnetic systems to apply forces onto rotating machinery has been carried out with high performance level (for example, magnetic bearings), the development of a conveniently easy and simples device for laboratory application presents interesting contribution to experimental methods used in test rigs based on similarity design to rotating machinery. The initial concept of the magnetic actuator proposed here is simple, but enables either the external excitation without contact or the vibration control when associated with a controller system. However, the performance characteristics tunning to attend the dynamic demand of the system is not so trivial. Following this focus, the work brings practical experience and discussion about the development and performance analysis of a magnetic actuator used for rotating machinery tests. The influence of the electrical current in the actuator coils, the air-gap between actuator and rotative system, thetype of surface of the actuator poles (flat or curved) as well as excitation frequency was verified. Force estimation was based on the magnetic flux density, measured by hall sensors. / Doutorado / Mecanica dos Sólidos e Projeto Mecanico / Doutor em Engenharia Mecânica

Page generated in 0.066 seconds