• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 32
  • 32
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Simulation of field controllable fluids with suspended ferrous particles in micro tubes

Ozcan, Sinan. January 2005 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2005. / "August 2005." Includes bibliographical references (leaves 102-114). Online version available on the World Wide Web.
12

Magnetic levitation as a suspension mechanism for cryogenic storage of hydrogen / Raymond Homan

Homan, Raymond David January 2012 (has links)
Current physical supports used in cryogenic storage vessels, in which liquid hydrogen is stored, conduct heat from the environment to the liquid hydrogen which causes the hydrogen temperature to rise and ultimately leads to hydrogen losses due to boil-off. The focus of this study is to investigate magnetic levitation as a possible suspension mechanism, eliminating the use of current physical supports and so doing reducing hydrogen losses due to boil-off. A conceptual design of a container which makes use of magnetic suspension is presented in this study. The concept is validated on the basis of the forces obtainable between a paramagnetic aluminium plate and an electromagnet, as well as the forces obtainable between a neodymium magnet and a bulk Yttrium-Barium-Copper-Oxide superconductor. The forces between the paramagnetic aluminium plate and electromagnet were determined mathematically and tested experimentally. The forces between the magnet and superconductor were determined mathematically and by finite element modelling and simulations using ANSYS Multiphysics. The results obtained in the mathematical- and finite element studies were then validated experimentally. It was found that the forces obtained experimentally between the aluminium plate and electromagnets are inadequate for magnetic suspension of the inner vessel given in the conceptual design. It was also found that the forces obtained experimentally and in the simulation studies for the magnet and superconductor of this study were inadequate due to shortcomings in the magnet and superconductor obtained for experimental tests. The conclusion of this study is that electromagnetic levitation should not be used as a magnetic suspension mechanism for storage of liquid hydrogen. It is also concluded that superconducting levitation can not be used as a suspension mechanism for the concept presented in this study, unless the methods suggested to increase the levitation forces between the neodymium magnet and superconductor are executed. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
13

Magnetic levitation as a suspension mechanism for cryogenic storage of hydrogen / Raymond Homan

Homan, Raymond David January 2012 (has links)
Current physical supports used in cryogenic storage vessels, in which liquid hydrogen is stored, conduct heat from the environment to the liquid hydrogen which causes the hydrogen temperature to rise and ultimately leads to hydrogen losses due to boil-off. The focus of this study is to investigate magnetic levitation as a possible suspension mechanism, eliminating the use of current physical supports and so doing reducing hydrogen losses due to boil-off. A conceptual design of a container which makes use of magnetic suspension is presented in this study. The concept is validated on the basis of the forces obtainable between a paramagnetic aluminium plate and an electromagnet, as well as the forces obtainable between a neodymium magnet and a bulk Yttrium-Barium-Copper-Oxide superconductor. The forces between the paramagnetic aluminium plate and electromagnet were determined mathematically and tested experimentally. The forces between the magnet and superconductor were determined mathematically and by finite element modelling and simulations using ANSYS Multiphysics. The results obtained in the mathematical- and finite element studies were then validated experimentally. It was found that the forces obtained experimentally between the aluminium plate and electromagnets are inadequate for magnetic suspension of the inner vessel given in the conceptual design. It was also found that the forces obtained experimentally and in the simulation studies for the magnet and superconductor of this study were inadequate due to shortcomings in the magnet and superconductor obtained for experimental tests. The conclusion of this study is that electromagnetic levitation should not be used as a magnetic suspension mechanism for storage of liquid hydrogen. It is also concluded that superconducting levitation can not be used as a suspension mechanism for the concept presented in this study, unless the methods suggested to increase the levitation forces between the neodymium magnet and superconductor are executed. / Thesis (MIng (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2013
14

Selection of controller gains for an electromagnetic suspension system

Foo, Jong Teck. January 1993 (has links)
Thesis (M.S.)--Ohio University, March, 1993. / Title from PDF t.p.
15

Drie-dimensionele magnetiese laer vir rotors met hoë rotasiesnelhede

Pretorius, Jan Harm Christiaan 14 May 2014 (has links)
M.Ing. (Electrical & Electronic Engineering) / Please refer to full text to view abstract
16

Further Applications of the Dynamic Circuit Theory of the Electrodynamic Repulsive Magnetic Levitation Systems

Jain, Om Prakash January 1978 (has links)
Note:
17

Passive stabilization of flywheel magnetic bearings

Basore, Paul Alan January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 218-223. / by Paul Alan Basore. / M.S.
18

Analysis and design of ferromagnetic suspensions for simultaneous lift and guidance of a tracked levitated vehicle.

Limbert, Douglas Alan January 1977 (has links)
Thesis. 1977. Sc.D.--Massachusetts Institute of Technology. Dept. of Mechanical Engineering. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / Sc.D.
19

Hybrid Fuzzy PID Controller with Adaptive Genetic Algorithms for the Position Control and Improvement of Magnetic Suspension System

Huang, Jiun-kuei 24 June 2004 (has links)
Magnetic suspension systems are highly nonlinear and essentially unstable systems. In this thesis, we utilize a phase-lead controller operating in the inner loop to stabilize the magnetic suspension system at first. Furthermore, we design a fuzzy PID controller operating in the outer loop to overcome the nonlinearity and to improve the system¡¦s performances. Because of setting the parameters in traditional fuzzy PID is a long-winded trial and error, so we adopt non-binary modified adaptive genetic algorithms to help us finding the parameters of fuzzy PID controller. As to the experimental implementation, we set two situations in our experiment test: (1) we utilize fuzzy PID controller with initial voltage to test the positions control, and eliminate the extra disturbance. And, (2) we utilize fuzzy PID controller without initial voltage to control the position of suspension object. For the experimental results, we obtain that the designed fuzzy PID controller not only increases the system¡¦s operating range, but also positions accurately and rapidly, and it meanwhile can eliminate the extra disturbance.
20

Hybrid Fuzzy PID Controller for a Magnetic Suspension System via Genetic Algorithms

Liu, Jyh-Haur 20 June 2003 (has links)
Abstract Magnetic suspension systems are highly nonlinear and essentially unstable systems. In this thesis, we facilitate the position control problem for the DC electromagnetic suspension system. We utilize a phase-lead controller operating in the inner loop to stabilize the system first, and try to design a PID fuzzy logic controller (PIDFLC) operating in the outer loop to overcome the nonlinearity of the system and to improve the system¡¦s performance. Since the work of setting fuzzy control parameters is a long-winded trial and error, we adopt non-binary modified GAs to help us setting and optimizing parameters. As experimental results show that the designed PIDFLC not only increases the system¡¦s operating range, but also positions accurately and rapidly; meanwhile, it has the ability to eliminate extra disturbance. In addition, comparing with other control theories, the control method which we utilize is easier to be implemented.

Page generated in 0.1114 seconds