• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Processing and Modeling of Gravity, Magnetic and Electromagnetic Data in the Falkenberg Area, Sweden

Mohammadi, Soroor January 2014 (has links)
Falkenberg area is located in southwest Sweden formed in the Sveconorwegian orogen and contains an extremely complex geological structure. Multiple geophysical datasets have been acquired and together with available petrophysical information, models corresponding to the subsurface geological structures were generated. The collected data comprise ground magnetic, AMT (Audio Magnetotelluric) and RMT (Radio Magnetotelluric) data. The available airborne magnetic and ground gravity data acquired by the Geological Survey of Sweden (SGU) as well as the reflection seismic section from a study made by Uppsala University further aids in obtaining substantially improved interpretation of the geometry of the structures along the AMT profile. The principal objective of this profile was to delineate and map the possible deformation zone crossed by the profile. The AMT study was expected to complement existing geophysical data and improve existing interpretations. The Ullared deformation zone contains decompressed eclogite facies rocks. The presented results were obtained by comparison of different geophysical methods along the profile. The susceptibility model and resistivity model show that eclogites have higher resistivity and susceptibility than the surrounding structures. However use of the Occam type of inversion on the AMT data, makes the resistivity model smoother than the susceptibility model and as a results it is difficult to estimate the dip of the structures. The AMT profile and the seismic section show the same dip direction (NE) for the eclogite bearing structures although due to the smoothing in the AMT model the dips seen in the seismic section cannot be recovered in the resistivity model.
2

Geologically-constrained UBC–GIF gravity and magnetic inversions with examples from the Agnew-Wiluna greenstone belt, Western Australia

Williams, Nicholas Cory 05 1900 (has links)
Geologically-constrained inversion of geophysical data is a powerful method for predicting geology beneath cover. The process seeks 3D physical property models that are consistent with the geology and explain measured geophysical responses. The recovered models can guide mineral explorers to prospective host rocks, structures, alteration and mineralisation. This thesis provides a comprehensive analysis of how the University of British Columbia Geophysical Inversion Facility (UBC–GIF) gravity and magnetic inversions can be applied to subsurface mapping and exploration by demonstrating the necessary approach, data types, and typical results. The non-uniqueness of inversion demands that geological information be included. Commonly available geological data, including structural and physical property measurements, mapping, drilling, and 3D interpretations, can be translated into appropriate inversion constraints using tools developed herein. Surface information provides the greatest improvement in the reliability of recovered models; drilling information enhances resolution at depth. The process used to prepare inversions is as important as the geological constraints themselves. Use of a systematic workflow, as developed in this study, minimises any introduced ambiguity. Key steps include defining the problem, preparing the data, setting inversion parameters and developing geological constraints. Once reliable physical property models are recovered they must be interpreted in a geological context. Where alteration and mineralisation occupy significant volumes, the mineralogy associated with the physical properties can be identified; otherwise a lithological classification of the properties can be applied. This approach is used to develop predictive 3D lithological maps from geologically-constrained gravity and magnetic inversions at several scales in the Agnew-Wiluna greenstone belt in Australia’s Yilgarn Craton. These maps indicate a spatial correlation between thick mafic-ultramafic rock packages and gold deposit locations, suggesting a shared structural control. The maps also identify structural geometries and relationships consistent with the published regional tectonic framework. Geophysical inversion provides a framework into which geological and geophysical data sets can be integrated to produce a holistic prediction of the subsurface. The best possible result is one that cannot be dismissed as inconsistent with some piece of geological knowledge. Such a model can only be recovered by including all available geological knowledge using a consistent workflow process.
3

Geologically-constrained UBC–GIF gravity and magnetic inversions with examples from the Agnew-Wiluna greenstone belt, Western Australia

Williams, Nicholas Cory 05 1900 (has links)
Geologically-constrained inversion of geophysical data is a powerful method for predicting geology beneath cover. The process seeks 3D physical property models that are consistent with the geology and explain measured geophysical responses. The recovered models can guide mineral explorers to prospective host rocks, structures, alteration and mineralisation. This thesis provides a comprehensive analysis of how the University of British Columbia Geophysical Inversion Facility (UBC–GIF) gravity and magnetic inversions can be applied to subsurface mapping and exploration by demonstrating the necessary approach, data types, and typical results. The non-uniqueness of inversion demands that geological information be included. Commonly available geological data, including structural and physical property measurements, mapping, drilling, and 3D interpretations, can be translated into appropriate inversion constraints using tools developed herein. Surface information provides the greatest improvement in the reliability of recovered models; drilling information enhances resolution at depth. The process used to prepare inversions is as important as the geological constraints themselves. Use of a systematic workflow, as developed in this study, minimises any introduced ambiguity. Key steps include defining the problem, preparing the data, setting inversion parameters and developing geological constraints. Once reliable physical property models are recovered they must be interpreted in a geological context. Where alteration and mineralisation occupy significant volumes, the mineralogy associated with the physical properties can be identified; otherwise a lithological classification of the properties can be applied. This approach is used to develop predictive 3D lithological maps from geologically-constrained gravity and magnetic inversions at several scales in the Agnew-Wiluna greenstone belt in Australia’s Yilgarn Craton. These maps indicate a spatial correlation between thick mafic-ultramafic rock packages and gold deposit locations, suggesting a shared structural control. The maps also identify structural geometries and relationships consistent with the published regional tectonic framework. Geophysical inversion provides a framework into which geological and geophysical data sets can be integrated to produce a holistic prediction of the subsurface. The best possible result is one that cannot be dismissed as inconsistent with some piece of geological knowledge. Such a model can only be recovered by including all available geological knowledge using a consistent workflow process.
4

Geologically-constrained UBC–GIF gravity and magnetic inversions with examples from the Agnew-Wiluna greenstone belt, Western Australia

Williams, Nicholas Cory 05 1900 (has links)
Geologically-constrained inversion of geophysical data is a powerful method for predicting geology beneath cover. The process seeks 3D physical property models that are consistent with the geology and explain measured geophysical responses. The recovered models can guide mineral explorers to prospective host rocks, structures, alteration and mineralisation. This thesis provides a comprehensive analysis of how the University of British Columbia Geophysical Inversion Facility (UBC–GIF) gravity and magnetic inversions can be applied to subsurface mapping and exploration by demonstrating the necessary approach, data types, and typical results. The non-uniqueness of inversion demands that geological information be included. Commonly available geological data, including structural and physical property measurements, mapping, drilling, and 3D interpretations, can be translated into appropriate inversion constraints using tools developed herein. Surface information provides the greatest improvement in the reliability of recovered models; drilling information enhances resolution at depth. The process used to prepare inversions is as important as the geological constraints themselves. Use of a systematic workflow, as developed in this study, minimises any introduced ambiguity. Key steps include defining the problem, preparing the data, setting inversion parameters and developing geological constraints. Once reliable physical property models are recovered they must be interpreted in a geological context. Where alteration and mineralisation occupy significant volumes, the mineralogy associated with the physical properties can be identified; otherwise a lithological classification of the properties can be applied. This approach is used to develop predictive 3D lithological maps from geologically-constrained gravity and magnetic inversions at several scales in the Agnew-Wiluna greenstone belt in Australia’s Yilgarn Craton. These maps indicate a spatial correlation between thick mafic-ultramafic rock packages and gold deposit locations, suggesting a shared structural control. The maps also identify structural geometries and relationships consistent with the published regional tectonic framework. Geophysical inversion provides a framework into which geological and geophysical data sets can be integrated to produce a holistic prediction of the subsurface. The best possible result is one that cannot be dismissed as inconsistent with some piece of geological knowledge. Such a model can only be recovered by including all available geological knowledge using a consistent workflow process. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate

Page generated in 0.0499 seconds