1 |
Návrh magnetického obvodu rychlého magnetoreologického tlumiče bez použití feritů / The design of fast magnetorheological valves without the use of ferritesStrmiska, Tomáš January 2017 (has links)
This diploma thesis deals with development of a new generation of magnetic circuits of fast magnetoreological (MR) dampers that will not use problematic ferrite materials. To ensure a short response time, eddy currents must be avoided. Using the Finite Element Method, 2 solutions were proposed - the use of soft magnetic composites with high electrical resistance and the cutting of grooves in metallic material. Subsequently, 2 magnetic circuits were produced - one from Sintex SMC prototyping material composite and one from 11SMn30 steel with 48 deep grooves 0,35 mm wide. Both were implemented into the MR damper and tested on a hydraulic pulsator. The results of the experiments were compared with 2 different MR dampers: one with 11SMn30 magnetic circuit without grooves and another with the Epcos N87 ferrite magnetic core. It has been found that both new circuits have ensured an equally short response of the damper force to the change of electric current like ferrite. At the same time, a much larger dynamic range was ensured. Compared to 11SMn30 without grooves, the new circuits provided approximately 7x faster response.
|
2 |
Vývoj fail-safe magnetoreologického tlumiče / The development of fail-safe magnetorheological damperHašlík, Igor January 2020 (has links)
This diploma thesis deals with an engineering design of a fail-safe magnetorheological (MR) damper capable of semi-active control. The first part of the thesis is devoted to the current state of knowledge of fail-safe MR dampers and permanent magnets contained in these dampers. The next part contains an engineering design of a fail-safe MR damper, made using FEM simulations, and its subsequent testing in terms of magnetic and hydraulic properties. Finally, a design of a fail-safe MR damper with fast response time was made and simulated using verified FEM analysis. Fast response time is ensured by limiting the generation of eddy currents in the piston core by grooving.
|
3 |
Modeling, Control and Monitoring of Smart Structures under High Impact LoadsArsava, Kemal Sarp 12 April 2014 (has links)
In recent years, response analysis of complex structures under impact loads has attracted a great deal of attention. For example, a collision or an accident that produces impact loads that exceed the design load can cause severe damage on the structural components. Although the AASHTO specification is used for impact-resistant bridge design, it has many limitations. The AASHTO specification does not incorporate complex and uncertain factors. Thus, a well-designed structure that can survive a collision under specific conditions in one region may be severely damaged if it were impacted by a different vessel, or if it were located elsewhere with different in-situ conditions. With these limitations in mind, we propose different solutions that use smart control technology to mitigate impact hazard on structures. However, it is challenging to develop an accurate mathematical model of the integrated structure-smart control systems. The reason is due to the complicated nonlinear behavior of the integrated nonlinear systems and uncertainties of high impact forces. In this context, novel algorithms are developed for identification, control and monitoring of nonlinear responses of smart structures under high impact forces. To evaluate the proposed approaches, a smart aluminum and two smart reinforced concrete beam structures were designed, manufactured, and tested in the High Impact Engineering Laboratory of Civil and Environmental Engineering at WPI. High-speed impact force and structural responses such as strain, deflection and acceleration were measured in the experimental tests. It has been demonstrated from the analytical and experimental study that: 1) the proposed system identification model predicts nonlinear behavior of smart structures under a variety of high impact forces, 2) the developed structural health monitoring algorithm is effective in identifying damage in time-varying nonlinear dynamic systems under ambient excitations, and 3) the proposed controller is effective in mitigating high impact responses of the smart structures.
|
Page generated in 0.0709 seconds