• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE EFFECTS OF SPATIAL CONFIGURATION OF POPULATIONS ON THE MAINTENANCE OF THE SEXES IN A CLONAL ORGANISM

Stieha, Christopher 01 January 2012 (has links)
Despite the two-fold advantage to asexual reproduction and its prevalence in a variety of organisms, sexual reproduction is prevalent across all taxa. The maintenance of two sexes is required to ensure genetic diversity and to prevent “evolutionary dead ends,” especially in clonal organisms. Many mechanisms have been proposed for the maintenance of two sexes, ranging from environmental variation and stochasticity, parasites and predators, and mutation rates. Spatial configuration, the size and location of populations with respect to other populations, can allow two competitors to coexist when one would normally be lost. This is especially important when the two competitors are the two sexes. In the clonal organism Marchantia inflexa, I determined that spatial configuration of populations can directly influence the maintenance of both sexes in a population and in an aggregate of populations (a metapopulation) using a combination of theoretical models and field studies. Based on field studies, population size has a significant influence on whether a subpopulation will contain both sexes, with populations smaller than 1m2 being more likely to contain only one sex while populations greater than 1m2 are more likely to contain both sexes. Based on mathematical models, the spatial arrangement of subpopulations within a metapopulation can greatly influence whether a metapopulation maintains both sexes as well as whether the metapopulation persists once one sex has been lost. Field data suggest that distance to nearest neighbor, a measurement of spatial arrangement, influences the maintenance of the sexes within subpopulations, but could affect maintenance differently depending on the metapopulation identity. In some metapopulations, both sexes are maintained when the nearest neighbor is close, while in other streams, one sex is lost when the nearest neighbor is close. When mathematical models are used to explicitly simulate natural metapopulations, the mathematical model predicts the observed sex ratios in one metapopulation, predicts the observed bias in another metapopulation, and fails to predicted observed values in two other metapopulations. Understanding spatial configuration helps us understand the maintenance and loss of sex, but other factors, such as environmental differences, may be required to accurately predict which sex will be lost.

Page generated in 0.1235 seconds