441 |
Aspects of the epidemiology of malaria in Natal Province, Republic of South Africa.Sharp, Brian Leslie. January 1990 (has links)
This study investigated aspects of the epidemiology of malaria in the Natal province of the Republic of South Africa. In this study the Collins English dictionary definition of epidemiology is used where it is defined as the branch of medical science concerned with the occurrence,
transmission and control of an epidemic disease. Malaria has been a notifiable disease in the Republic of South Africa since 1958. Retrospective malaria case data from the Natal province as a whole was analyzed and the data from the KwaZulu and Natal areas of the province compared. Malaria cases were reported from 35 of the 65 magisterial districts in Natal province during the study period. In the Natal areas 91.5% of the cases were reported from eight districts and in the KwaZulu areas 96.4% of the cases came from three districts or as imports from Mozambique. The overall attack rate for both the Natal and KwaZulu areas using the total population figures for each area were very similar for the period 1986-1988 at 0.71 and 0.70 per 1000 head of population for the respective areas. The disease showed a distinct seasonal pattern in the KwaZulu areas with 86.9% of the cases being classified as indigenous and only 13.1% as imported. In the Natal areas, however, the seasonal pattern was not as marked and only 12.1% of the cases were recorded as indigenous and in excess of 82% as imported. Three species of the Anopheles gambiae complex were found to occur sympatrically in Natal province, namely: An. arabiensis, An. quadriannulatus and An. merus. Of these species An. arabiensis was found to occur at five localities during or after the notification of indigenous malaria cases from these areas. Due to the sympatric distribution of these species particular emphasis was placed on species
identification and in particular the biting behaviour and control of An. arabiensis was investigated. The study found both morphological and behavioural differences between populations of An. arabiensis from those areas of the province with an intra-domiciliary residual insecticide
vector control programme and those from the unsprayed areas. In the unsprayed areas the majority of the indoor resting An. arabiensis had fed on man whereas in the sprayed areas the majority of the indoor resting An. arabiensis were bovine fed. In the sprayed areas, however, the majority of the An. arabiensis caught leaving huts had fed on man. The percentage survival of bloodfed An. arabiensis caught leaving huts in the DDT sprayed area was in excess of 72%. The data strongly suggest that optimal control of An. arabiensis will not be achieved using the current control strategy of the annual application of intra-domiciliary DDT. / Thesis (Ph.D.)-University of Natal, 1990.
|
442 |
Elemental composition in monocytes in response to anti-malarial drugs and hemozoin.Hiltunen, Tamara Ann. 02 December 2013 (has links)
Every year there are approximately 300 million new cases of malaria with 2 million deaths. The majority of deaths occur in African children between the ages of 1 and 4 years and are caused by the parasite Plasmodium falciparum. Approximately R90-million is spent by the South African government each year to control malaria. Peripheral blood monocytes are the first line of defence during infection and they perform many functions, such as phagocytosis, intracellular and extracellular killing by the generation of reactive oxygen intermediates and the production of cytokines. During malaria infection some of these functions are suppressed
or elevated by phagocytosis of hemozoin, fever conditions (heat shock) and the presence of anti-malarial drugs in the bloodstream of the patient. Under normal conditions phospholipase A₂ (PLA₂) is down regulated by heat shock protein 70 (HSP70) but in severe malaria PLA₂ is elevated. Two antigenic peptides were selected from the highly conserved human HSP70 and HSC70 proteins. Anti-peptide antibodies raised in chickens were affinity purified and were able to recognize the free peptide in an ELISA and the native proteins in human and canine heat shocked lymphocyte lysates on western blots. Antibodies against HSP70 detected two major proteins at 70 kDa and 33 kDa, which are most likely native HSP70 and a possible breakdown product of HSP70 respectively. The anti-HSC70 antibodies detected two proteins, an as yet unidentified 100 kDa protein and the 70 kDa HSC70. Due to the monocytes being activated during the isolation procedure, HSP70 was expressed at both 37°C and 44°C in this
study. Electron-probe X-ray microanalysis enables determination of the elemental composition of any sample under the electron microscope. When the electron beam interacts with a specimen, X-rays are generated and can be used to identify and quantify the elements in the cell. Canine monocytes were analysed using this technique after incubation with therapeutically relevant concentrations of anti-malarial drugs, β-hematin and under fever
conditions. The concentrations of the elements in normal canine monocytes were: Na (518.2 mmoles/kg), Mg (199.1 mmoles/kg), P (439.7 mmoles/kg), S (316.3 mmoles/kg), Cl (279.7 mmoles/kg), K (204 mmoles/kg) and Ca (81.3 mmoles/kg). All the drugs (quinine, chloroquine, primaquine, pyrimethamine, artemisinin, tetracycline, doxycycline, dapsone and suramin), phagocytosis of latex beads and β-hematin as well as heat shock, altered the elemental concentrations of canine monocytes in a unique way. Quinine, artemisinin and suramin were the most influential drugs in altering the concentrations of elements in the cells.Suramin substantially increased the concentration of Ca (356%) after 18 h and decreased K concentration (64%) after 18 h. Quinine decreased the concentrations ofNa (47%), Cl (70%), and K (67%). The concentrations of P (52%) and Ca (72%) were increased by quinine after 10 min. Artemisinin induced small increases in Mg (21 %) and K (38%) concentrations within 10
min and large increases in the concentrations of Na (291%) and Cl (389%) after 18 h. Chloroquine induced a large increase in S (212%). Quinine induced major changes after 10 min whereas artemisinin, suramin chloroquine induced huge changes after 18 h. Although artemisinin did increase the concentrations certain elements after 10 min, it was by much
smaller amounts than after 18 h. Quinine, suramin and pyrimethamine altered the P/K ratios by the greatest margins whereas artemisinin had no significant effect. The P/K ratio was increased by quinine (348%) after 10 min and suramin (261%) after 18 h. Pyrimethamine decreased the P/K ratio after 18 h by 49%. The findings suggest that further investigations into
the alterations in the elemental concentrations of monocytes by anti-malarial drugs, fever and hemozoin may lead to a greater understanding of the influence of these conditions in a patient during a malaria infection and its treatment. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2003.
|
443 |
Susceptibility and resistance to insecticides among malaria vector mosquitoes in Mozambique.Casimiro, Sonia Lina Rodrigues. January 2003 (has links)
Insecticide resistance in malaria vector mosquitoes reduces the efficacy of insecticide in killing and can therefore cause a major problem for malaria vector control by insecticides. In Mozambique, pyrethroid resistance in Anopheles funestus was first detected in December 1999 in the southern corner of Maputo Province. Since then, various collections have been made at selected sites throughout the country and WHO standard susceptibility tests and biochemical assays were conducted to determine the susceptibility status and the major resistance mechanisms, in the Fl generation of field collected mosquitoes. Three malaria vector species: Anopheles funestus s.s., Anopheles
gambiae s.s. and Anopheles arabiensis were identified in this study by Polymerase Chain Reaction (PCR) and their distributions plotted. The susceptibility data indicate that the Anopheles funestus s.s population in southern Mozambique is widely resistant to pyrethroid and with low levels of carbamate resistance evident at six localities. No resistance to organophosphate and DDT was observed at any study sites. Biochemical tests indicate the presence of an altered acetlylcholinesterase in all collection localities with the exception of Massinga district. Elevated esterase activity with substrate a-naphthyl acetate were detect in Boane with a probable role in organophosphate resistance. Elevated GST were detected in Boane, Moamba and Catembe. Very low levels monooxygenase titres were registered in all the localities in Mozambique, which suggest
that this resistance mechanism is not operating in these areas. Pyrethroid resistance in the Anopheles gambiae complex was detected only in Anopheles arabiensis from one locality. No resistant to other groups of insecticide were observed. Altered acetlylcholinesterases were registered in all collection localities and in both species: Anopheles gambiae s.s. and Anopheles arabiensis. Elevated
esterase with substrate a-naphthyl acetate were detected in Anopheles arabiensis at only one locality. Elevated GSTs were detected at all localities and in both species. The implications of the findings for malaria vector control in Mozambique are discussed. / Thesis (M.Sc.)-University of Natal, Durban, 2003.
|
444 |
Mechanisms of drug resistance in malariaAbrahem, Abrahem F. January 1999 (has links)
Plasmodium falciparum is a protozoan parasite that causes malaria, a disease that is widely spread in the tropical world. Chloroquine has been very effective against malaria since it was introduced into the field until the emergence of chloroquine resistant malaria. Chloroquine resistant malaria has become widely spread in the endemic area. In addition, cross resistance to other antimalarial drugs that are different in structure and function has been reported, even though some of these drugs had not been previously used in that particular region. The objective of this study was to determine the molecular mechanism of this resistance. Actinomycin D resistant Plasmodium falciparum was selected in vitro from the drug sensitive parental clone, 3D7. Interestingly, we found that the selected strain is resistant to chloroquine, mefloquine, antimalarial drugs, and Rhodamine 123. Comparison between 3D7 parental and 3D7R/act-D2 resistant P. falciparum did not show a difference in the level of expression of pfmdr1 previously implicated in the drug resistance. In addition we found that the level of accumulation of two drugs actinomycin D is reduced in the resistant parasite as compared with the sensitive one. Further studies indicated that the reduction in the drug accumulation was due to the increase in drug efflux. Furthermore, to identify if other P-glycoprotein homologues are involved in the resistance, oligonucleotide primers to conserved sequences in ABC domains have been used. An ABC protein homologous to subunit 4 of the 26S proteasome complex has been cloned. In vitro transcription, translation and immunoprecipitation analysis were done using reticulocytes lysate and polyclonal antibodies generated against peptide sequence in the P. falciparum S4 subunit. Surprisingly a decrease in the expression of this gene was found in the resistant clone, 3D7R/act-D2, compared to its parental cell line as determined by Northern blot analysis. Studies are in progress to determine
|
445 |
Var gene transcription and clinical disease manifestation in African P. falciparum malaria field isolatesKyriacou, Helen M. January 2008 (has links)
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variant surface antigens, encoded by the var gene family, play a crucial role in malaria pathogenesis through mediating immunomodulation and host cell adhesion. Var genes can be sub-grouped according to genetic or functional features. This thesis examined var gene transcription of conserved groups of var genes in the context of clinical malaria disease manifestation in African field isolates. Analysis of var gene transcription in 26 P. falciparum field isolates from Malian children revealed that field isolates from children with cerebral malaria show significantly higher transcription of group A var genes than the field isolates from children with equally high parasite burdens but no symptoms or signs of severe malaria (hyperparasitaemia). These results suggest that group A var genes are important determinants of parasite virulence and strengthen the growing body of evidence associating group A var expression with severe disease in children. Analysis of var gene transcription in six P. falciparum placental malaria field isolates showed that var2csa was transcribed in all placental malaria field isolates, but not in 10 childhood isolates examined. This finding, also reported in other recent and subsequent studies, suggests that var2csa expression is a critical factor in the onset of clinical malaria disease in pregnant women. Examination of type 3 var gene transcription in laboratory and field isolates established that these var genes were commonly transcribed in blood-stage parasites, and sequence analysis of the transcribed domains confirmed a very high level of conservation across this var gene sub-family. Finally, rosetting is a property of some group A PfEMP1 and is associated with disease severity in African childhood malaria. Certain glycoconjugate compounds can disrupt rosetting, possibly due to the functional similarities of interactions between rosetting PfEMP1 and host rosetting ligands. A non-toxic compound (curdlan sulfate) was found to be effective at disrupting rosettes in all 18 rosetting field isolates examined, showing potential for use in treatment of severe malaria due to rosetting P. falciparum isolates. The findings presented in this thesis expand current knowledge of the role and significance of var genes/PfEMP1 in P. falciparum malaria disease pathogenesis. The work demonstrates the importance of continued research on var genes/PfEMP1 in further understanding this complex parasite, and ultimately in combating this severe disease.
|
446 |
An integrated approach to unravelling malaria cell signalling pathwaysGraciotti, Michele January 2013 (has links)
In the current thesis we analyse protein phosphorylation pathways in P. falciparum, the protozoa responsible for the most virulent form of malaria in order to both understand the role and scope of this protein modification in the parasite, and to explore its feasibility as a new drug target. With the aim to map phosphorylation pathways controlled by P. falciparum Casein Kinase 2 (PfCK2), we developed a new chemical-biological approach based on γ-modified ATP analogues bearing reporting groups on the transferred phosphate in order to selectively tag CK2 substrates. Despite being able to efficiently synthesise a small set of analogues, the data presented here shows that the P-N linkage bond between the nucleotide and the tag is stable during the assay conditions but not during the product analysis due to its acidic liability (e.g. with HPLC, MALDI); suggesting that a different type of linkage should be chosen in the future. Detailed characterisation studies of the parasite PfCK2 presented here showed a number of important features differing from human CK2. Docking analyses with a CK2 inhibitor showed that the PfCK2 ATP binding pocket is smaller than human CK2 due to the presence of Val116 and Leu45 which in the human kinase are replaced by more bulky isoleucine residues: Ile120 and Ile49. The difference between the human and parasite CK2 orthologues extends further to mechanisms of activation and regulation. Shown here is the autophosphorylation of PfCK2 that, unlike the human orthologue, occurs within subdomain I at Thr63. This autophosphorylation is essential for full catalytic activity. In addition we also showed that Thr63 phosphorylation regulates the interaction between the calalytic α-subunit and the regulatory β2-subunit. Here, we also presented evidence for tyrosine phosphorylated proteins in parasite infected red blood cells. PfCK2 can act as a dual specificity kinase phosphorylating P. falciparum Minichromosome Maintenance protein 2 (PfMCM2) on Tyr16 in vitro. It is therefore possible that PfCK2 may contribute to tyrosine phosphorylation within the parasite. Finally, we also reported a study regarding MCM2-Ser13 phosphorylation which successfully identified PfCK1 as the kinase responsible for this event.
|
447 |
Plasmodium falciparum : studies on the mechanism of chloroquine resistance and its reversalBray, Patrick Gerrard January 1992 (has links)
No description available.
|
448 |
Dihydroartemisinin esters as prodrugs against resistant P. falciparum strains / Krebs J.H.Krebs, Johann Hendrik January 2011 (has links)
Malaria is caused by the Plasmodium sp. parasite that infects the red blood cells. Of the four
types of malaria, the most serious type is transmitted by Plasmodium falciparum species. It
can be life threatening. The other types of malaria (P. vivale, P. ovale and P. malariae) are
generally less serious and are not life threatening. The existence of malaria as an enemy of
humankind certainly predates written history. For thousands of years malaria has been a
deadly scourge, and it remains one today. From American president John Adams who nearly
succumbed to malaria in Amsterdam while on a diplomatic mission, back down to the
timeline to the early Chinese, Indians, Greeks and Romans, malaria has not spared its
victims, rich or poor.
It wasn’t until the 19th Century that information about the true cause of malaria became
known. Yet despite this knowledge, malaria still ravages Sub–Saharan Africa, South–East
Asia and Latin America, taking as its victim’s mainly young children and pregnant women.
However, without certain discoveries leading to a better understanding of malaria, new
groundbreaking work wouldn’t be possible.
Artemisinin and its derivatives are developing into a very important new class of antimalarial
and their usage is becoming more common in the fight against malaria. The most commonly
used and applied of these derivatives are artesunate, artemether, arteether and
dihydroartemisinin. The discovery of artemisinin as the pharmacological active ingredient in
an age old Chinese herb, Artemisia annua, was a major breakthrough in malaria
chemotherapy. Discovery of qinghaosu in the 1970s sparked a new age for chemotherapy of
malaria, and greatly inspired further research on organic peroxides. This generated
widespread interest and led to the design and synthesis of organic peroxides into a highly
active area of organic chemistry.
The artemisinin derivatives act quickly and are eliminated quickly. Their rapid onset makes
them especially effective against severe malaria. Their rapid disappearance may be a key
reason why artemisinin resistance has been so slow to develop, and may be the reason why
recrudences are so common when these drugs are used in monotherapy. Since their
isolation, artemisinins have had a substantial impact on the treatment of malaria. Although
very potent, the use of artemisinins as prophylactic antimalarials is not recommended.
The aim of this study was to synthesise ester derivatives of artemisinin, determine certain
physicochemical properties such as aqueous solubility and partition coefficient, and to
evaluate their antimalarial activity in comparison to dihydroartemisinin and chloroquine.
In this study eight esters of dihydroartemisinin (DHA) were synthesised by substitution at C–
10. The structures of the prepared derivatives were confirmed by nuclear magnetic
resonance spectroscopy (NMR) and mass spectrometry (MS).
The new artemisinin esters were tested in vitro against the chloroquine sensitive strain of
Plasmodium falciparum (D10). All the compounds tested showed activity against the D10
strain. All of the esters showed potency significantly better than chloroquine, except the octyl
and decyl esters which were less active. The reason for the low activity could be ascribed to
the fact that these two esters are both water immiscible oils, leading to solubility problems.
The ethyl, butyl, phenyl and p–nitrophenyl esters all had similar IC50 values making their
activity similar. The lowest IC50 value was displayed by the butyl ester with a value of 3.2 x 10–
3 uM.
The poorest activity was recorded by the two oils, the octyl and decyl esters, with IC50 values
of 38 x 10–3 uM and 90.2 x 10–3 uM respectively. All other compounds showed less antimalarial
potency against the D10 strain compared with the other reference drug dihydroartemisinin,
except the butyl ester. The butyl ester 12 displayed activity comparable to that of DHA (IC50;
3.2 x 10–3 uM versus 3.8 x 10–3 uM), and is thus worthwhile being further investigated in terms
of pharmacokinetics in order to determine its half–life. Statistically it is impossible to make
structure–activity relationship (SAR) deductions from the data received as the number of
compounds in the series is too small.
The butyl (12) (IC50 = 3.2 uM), 4–nitrobenzyl (16) (IC50 =15 uM), 2–(acetyloxy) acetyl (17) (IC50
= 8.6 uM), and 2–phenylacetyl (18) (IC50 = 12.4 uM) esters showed on a 0.05 level
statistically significantly better activity against the chloroquine sensitive D10 strain of
Plasmodium falciparum than chloroquine itself while the decyl ester (14) (IC50 = 90.2 uM) was
statistically significantly less potent. The activity of the octyl (13) (IC50 = 38.0 uM) and benzyl
(15) (IC50 = 25.7 uM) esters did not differ from that of chloroquine. In comparison to
dihydroartemisinin the propyl (11) (IC50 = 24.1 uM), octyl (13) (IC50 = 38.0 uM), decyl (14)
(IC50 = 90.0 uM), and benzyl (15) (IC50 = 25.7 uM) esters proved to be statistically
significantly less potent than DHA while the activity of the butyl (12) (IC50 = 3.2 uM), 4–
nitrobenzyl (16) (IC50 =15.3 uM), 2–(acetyloxy) acetyl (17) (IC50 = 8.6 uM), and 2–phenylacetyl
(18) (IC50 = 12.4 uM) esters did not differ from that of DHA. / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
449 |
Dihydroartemisinin esters as prodrugs against resistant P. falciparum strains / Krebs J.H.Krebs, Johann Hendrik January 2011 (has links)
Malaria is caused by the Plasmodium sp. parasite that infects the red blood cells. Of the four
types of malaria, the most serious type is transmitted by Plasmodium falciparum species. It
can be life threatening. The other types of malaria (P. vivale, P. ovale and P. malariae) are
generally less serious and are not life threatening. The existence of malaria as an enemy of
humankind certainly predates written history. For thousands of years malaria has been a
deadly scourge, and it remains one today. From American president John Adams who nearly
succumbed to malaria in Amsterdam while on a diplomatic mission, back down to the
timeline to the early Chinese, Indians, Greeks and Romans, malaria has not spared its
victims, rich or poor.
It wasn’t until the 19th Century that information about the true cause of malaria became
known. Yet despite this knowledge, malaria still ravages Sub–Saharan Africa, South–East
Asia and Latin America, taking as its victim’s mainly young children and pregnant women.
However, without certain discoveries leading to a better understanding of malaria, new
groundbreaking work wouldn’t be possible.
Artemisinin and its derivatives are developing into a very important new class of antimalarial
and their usage is becoming more common in the fight against malaria. The most commonly
used and applied of these derivatives are artesunate, artemether, arteether and
dihydroartemisinin. The discovery of artemisinin as the pharmacological active ingredient in
an age old Chinese herb, Artemisia annua, was a major breakthrough in malaria
chemotherapy. Discovery of qinghaosu in the 1970s sparked a new age for chemotherapy of
malaria, and greatly inspired further research on organic peroxides. This generated
widespread interest and led to the design and synthesis of organic peroxides into a highly
active area of organic chemistry.
The artemisinin derivatives act quickly and are eliminated quickly. Their rapid onset makes
them especially effective against severe malaria. Their rapid disappearance may be a key
reason why artemisinin resistance has been so slow to develop, and may be the reason why
recrudences are so common when these drugs are used in monotherapy. Since their
isolation, artemisinins have had a substantial impact on the treatment of malaria. Although
very potent, the use of artemisinins as prophylactic antimalarials is not recommended.
The aim of this study was to synthesise ester derivatives of artemisinin, determine certain
physicochemical properties such as aqueous solubility and partition coefficient, and to
evaluate their antimalarial activity in comparison to dihydroartemisinin and chloroquine.
In this study eight esters of dihydroartemisinin (DHA) were synthesised by substitution at C–
10. The structures of the prepared derivatives were confirmed by nuclear magnetic
resonance spectroscopy (NMR) and mass spectrometry (MS).
The new artemisinin esters were tested in vitro against the chloroquine sensitive strain of
Plasmodium falciparum (D10). All the compounds tested showed activity against the D10
strain. All of the esters showed potency significantly better than chloroquine, except the octyl
and decyl esters which were less active. The reason for the low activity could be ascribed to
the fact that these two esters are both water immiscible oils, leading to solubility problems.
The ethyl, butyl, phenyl and p–nitrophenyl esters all had similar IC50 values making their
activity similar. The lowest IC50 value was displayed by the butyl ester with a value of 3.2 x 10–
3 uM.
The poorest activity was recorded by the two oils, the octyl and decyl esters, with IC50 values
of 38 x 10–3 uM and 90.2 x 10–3 uM respectively. All other compounds showed less antimalarial
potency against the D10 strain compared with the other reference drug dihydroartemisinin,
except the butyl ester. The butyl ester 12 displayed activity comparable to that of DHA (IC50;
3.2 x 10–3 uM versus 3.8 x 10–3 uM), and is thus worthwhile being further investigated in terms
of pharmacokinetics in order to determine its half–life. Statistically it is impossible to make
structure–activity relationship (SAR) deductions from the data received as the number of
compounds in the series is too small.
The butyl (12) (IC50 = 3.2 uM), 4–nitrobenzyl (16) (IC50 =15 uM), 2–(acetyloxy) acetyl (17) (IC50
= 8.6 uM), and 2–phenylacetyl (18) (IC50 = 12.4 uM) esters showed on a 0.05 level
statistically significantly better activity against the chloroquine sensitive D10 strain of
Plasmodium falciparum than chloroquine itself while the decyl ester (14) (IC50 = 90.2 uM) was
statistically significantly less potent. The activity of the octyl (13) (IC50 = 38.0 uM) and benzyl
(15) (IC50 = 25.7 uM) esters did not differ from that of chloroquine. In comparison to
dihydroartemisinin the propyl (11) (IC50 = 24.1 uM), octyl (13) (IC50 = 38.0 uM), decyl (14)
(IC50 = 90.0 uM), and benzyl (15) (IC50 = 25.7 uM) esters proved to be statistically
significantly less potent than DHA while the activity of the butyl (12) (IC50 = 3.2 uM), 4–
nitrobenzyl (16) (IC50 =15.3 uM), 2–(acetyloxy) acetyl (17) (IC50 = 8.6 uM), and 2–phenylacetyl
(18) (IC50 = 12.4 uM) esters did not differ from that of DHA. / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2012.
|
450 |
Common genetic variants of the IFN-γ and IFNGR1 regions : disease associations and functional propertiesKoch, Oliver January 2003 (has links)
There is growing evidence that susceptibility to many inflammatory and infectious diseases may be influenced by our genetic make up. Genetic variants in important immune genes may partially explain variation in susceptibility to common diseases. Interferon-γ (IFNγ) is one of the central mediators of the innate and adaptive immunity and has been implicated in a wide range of infectious and inflammatory disease processes. Severe disruptive mutations in coding regions of the IFN-γ receptor 1 gene (IFNGR1) have been found to be associated with fatal but very rare mycobacterial infections. This study looked at common polymorphisms in potentially regulatory non-coding regions of the IFNγ gene and the IFNGR1 gene and investigated their association with susceptibility to severe malaria, a disease for which there have been indications of a genetic component to susceptibility. Malaria is one of the major causes of childhood deaths in Africa. IFNγ and its receptor have been shown to be critically involved in the host response to the malaria parasites. The promoter regions of IFNGR1 and its neighbouring genes, located on chromosome 6q23, and IFNγ and its neighbours, on chromosome 12ql4, were screened for polymorphisms. Haplotypes and linkage disequilibrium maps were constructed, signatures of natural selection were investigated, haplotype tagging SNPs were dentified, and association with disease was analysed. One of these preliminary results was a putative association between the IFNGRl-470ddel allele and susceptibility to severe malaria in the Mandinka ethnic group. This allele was in strong linkage disequilibrium (LD) with markers which are a considerable distance away which might represent a signature of natural selection. To assess the potential functional significance of the IFNGR1-47Q polymorphism, its effects on DNA-protein interactions and gene expression was investigated further in various cell lines. Evidence of tissue-specific nuclear protein binding to this site which seems to be involved in transcriptional regulation was observed.
|
Page generated in 0.0496 seconds