• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Genetic Variation and Evolution of Floral Display in Primula farinosa

Madec, Camille January 2014 (has links)
In this thesis, I combine molecular analyses, common-garden and field experiments to examine how evolutionary and ecological processes influence patterns of genetic variation among and within populations of the declining, insect-pollinated, self-incompatible, perennial herb Primula farinosa. More specifically I examined 1) whether genetic diversity at neutral marker loci was related to habitat fragmentation and habitat stability, 2) whether floral display and flowering time were more strongly differentiated among populations than were putatively neutral marker loci, 3) whether adaptive population differentiation could be detected on a local spatial scale, and 4) whether floral display differentially affected male and female reproductive success. Genetic diversity at neutral marker loci was lower within fragmented populations on the Swedish mainland than within the more densely occurring populations on the island Öland, SE Sweden. On Öland, fluctuations in population size were more pronounced on thin than on deep soils, but genetic diversity was not related to soil depth. Among-population genetic differentiation in scape length and flowering time was stronger than that of neutral marker loci, which is consistent with divergent selection acting on these traits. Water availability should influence the length of the growing season and thus the time available for fruit maturation, but flowering time in a common-garden experiment was not related to estimates of water availability at sites of origin. In a reciprocal transplant experiment conducted among four populations separated by up to a few kilometres and growing in environment differing in water availability and grazing intensity, no evidence of local adaption was observed. Finally, in a field experiment, interactions with pollinators and antagonists differentially affected selection on floral display through male and female function. Taken together, the results indicate that habitat connectivity and environmental heterogeneity contribute to high neutral and adaptive genetic variation in Primula farinosa on the island Öland, SE Sweden, and illustrate that effects on both male and female reproductive success need to be considered to understand fully the evolution of floral display.
2

The effect of sex ratio on male reproductive success in painted turtles, Chrysemys picta

Hughes, Elinor Jane 25 August 2011 (has links)
Sex ratio theory suggests that the strength of intersexual selection will increase as a population more male-biased; reflecting increased selectivity in mate choice. Populations of pond turtle have varying adult sex ratios, in painted turtles (Chrysemys picta), reported sex ratios range from female biased (1:3) to male biased (3:1). I investigated the effect of sex ratio on male reproductive success (quantified as “fertilization success”) in painted turtles. I examined the mating system of painted turtles in a female-biased population using microsatellite paternity analysis, relating variation in male fertilization success to male phenotype and offspring survival, employed ex situ behavioural observation to clarify the mechanism behind the variation in male fertilization success and used agent-based modeling to simulate the effects of changing sex ratio, population density and proportions of male phenotype on male fertilization success. Small males contributed sperm to a greater number of clutches than did larger males, but were not more likely to reproduce in a season than larger males. There was no offspring fitness advantage related to male body size and no relationship between male claw length and fertilization success. Large male painted turtles courted at a higher frequency than small males. I found no relationship between male courtship behavior and claw length. Females showed no preference for males of any phenotype. Agent-based simulations were based on the distribution of best fit from the observed data; an amalgam of two Poisson distributions, each with its own probability of success and proportional representation in the final distribution. Increased female sex ratio bias, increased population density and increased proportions of “more successful” males all increased the mean and variance of male fertilization success, based on increased encounter rate among turtles. Small and large male painted turtles enjoy different fertilization success. It is uncertain whether this difference is based on active female choice, cryptic female choice, sperm competition or a combination of factors. Sex ratio simulations predict the opposite result as that predicted by sex ratio theory. These contrary results should be compared to simulations manipulating choosiness and field data from painted turtle populations to clarify mechanisms influencing male reproductive success.

Page generated in 0.0778 seconds