Spelling suggestions: "subject:"mallia calculus.""
11 |
Computing the Greeks using the integration by parts formula for the Skorohod integralChongo, Ambrose 03 1900 (has links)
Thesis (MSc (Mathematics))--Stellenbosch University, 2008. / The computation of the greeks of an option is an important aspect of financial
mathematics. The information gained from knowing the value of a greek of
an option can help investors decide whether or not to hold on to or to sell
their options to avoid losses or gain a profit.
However, there are technical difficulties that arise from having to do this.
Among them is the fact that the mathematical formula for the value some
options is complex in nature and evaluating their greeks may be cumber-
some. On the other hand the greek might have to be numerically estimated
if the option does not posses an explicit evaluation formula. This could be a
computationally expensive undertaking.
Malliavin calculus offers us a solution to these problems. We can find
formula that can be used in combination with Monte Carlo simulations to
give results quickly and which are not computationally expensive to obtain
and hence give us an degree of accuracy higher that non Malliavin calculus
techniques.
This thesis will develop the Malliavin calculus tools that will enable us
to develop the tools which we will then use to compute the greeks of some
known options.
|
12 |
Fractional volatility models and malliavin calculus.January 2004 (has links)
Ng Chi-Tim. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 110-114). / Abstracts in English and Chinese. / Chapter Chapter 1 --- Introduction --- p.4 / Chapter Chapter 2 --- Mathematical Background --- p.7 / Chapter 2.1 --- Fractional Stochastic Integral --- p.8 / Chapter 2.2 --- Wick's Calculus --- p.9 / Chapter 2.3 --- Malliavin Calculus --- p.19 / Chapter 2.4 --- Fractional Ito's Lemma --- p.27 / Chapter Chapter 3 --- The Fractional Black Scholes Model --- p.34 / Chapter 3.1 --- Fractional Geometric Brownian Motion --- p.35 / Chapter 3.2 --- Arbitrage Opportunities --- p.38 / Chapter 3.3 --- Fractional Black Scholes Equation --- p.40 / Chapter Chapter 4 --- Generalization --- p.43 / Chapter 4.1 --- Stochastic Gradients of Fractional Diffusion Processes --- p.44 / Chapter 4.2 --- An Example : Fractional Black Scholes Mdel with Varying Trend and Volatility --- p.46 / Chapter 4.3 --- Generalization of Fractional Black Scholes PDE --- p.48 / Chapter 4.4 --- Option Pricing Problem for Fractional Black Scholes Model with Varying Trend and Volatility --- p.55 / Chapter Chapter 5 --- Alternative Fractional Models --- p.59 / Chapter 5.1 --- Fractional Constant Elasticity Volatility (CEV) Models --- p.60 / Chapter 5.2 --- Pricing an European Call Option --- p.61 / Chapter Chapter 6 --- Problems in Fractional Models --- p.66 / Chapter Chapter 7 --- Arbitrage Opportunities --- p.68 / Chapter 7.1 --- Two Equivalent Expressions for Geometric Brownian Motions --- p.69 / Chapter 7.2 --- Self-financing Strategies --- p.70 / Chapter Chapter 8 --- Conclusions --- p.72 / Chapter Appendix A --- Fractional Stochastic Integral for Deterministic Integrand --- p.75 / Chapter A.1 --- Mapping from Inner-Product Space to a Set of Random Variables --- p.76 / Chapter A.2 --- Fractional Calculus --- p.77 / Chapter A.3 --- Spaces for Deterministic Functions --- p.79 / Chapter Appendix B --- Three Approaches of Stochastic Integration --- p.82 / Chapter B.1 --- S-Transformation Approach --- p.84 / Chapter B.2 --- Relationship between Three Types of Stochastic Integral --- p.89 / Reference --- p.90
|
13 |
Duality formula for the bridges of a Brownian diffusion : application to gradient driftsRoelly, Sylvie, Thieullen, Michèle January 2005 (has links)
In this paper, we consider families of time Markov fields (or reciprocal classes) which have the same bridges as a Brownian diffusion. We characterize each class as the set of solutions of an integration by parts formula on the space of continuous paths C[0; 1]; R-d) Our techniques provide a characterization of gradient diffusions by a duality formula and, in case of reversibility, a generalization of a result of Kolmogorov.
|
14 |
Reciprocal classes of Markov processes : an approach with duality formulaeMurr, Rüdiger January 2012 (has links)
In this work we are concerned with the characterization of certain classes of stochastic processes via duality formulae. First, we introduce a new formulation of a characterization of processes with independent increments, which is based on an integration by parts formula satisfied by infinitely divisible random vectors. Then we focus on the study of the reciprocal classes of Markov processes. These classes contain all stochastic processes having the same bridges, and thus similar dynamics, as a reference Markov process. We start with a resume of some existing results concerning the reciprocal classes of Brownian diffusions as solutions of duality formulae. As a new contribution, we show that the duality formula satisfied by elements of the reciprocal class of a Brownian diffusion has a physical interpretation as a stochastic Newton equation of motion. In the context of pure jump processes we derive the following new results. We will analyze the reciprocal classes of Markov counting processes and characterize them as a group of stochastic processes satisfying a duality formula. This result is applied to time-reversal of counting processes. We are able to extend some of these results to pure jump processes with different jump-sizes, in particular we are able to compare the reciprocal classes of Markov pure jump processes through a functional equation between the jump-intensities.
|
15 |
Une équation stochastique avec sauts censurés liée à des PDMP à plusieurs régimes / A stochastic equation with censored jumps related to multi-scale Piecewise Deterministic Markov ProcessesRabiet, Victor 23 June 2015 (has links)
L'ensemble de ce travail est dédié à l'étude de certaines propriétés concernant les processus de sauts d-dimensionnels X = (Xt) dont le générateur est donné par Lψ(x) = 1/2 ∑ aᵤᵥ(x)∂²ψ(x)/∂xᵤ∂xᵥ + g(x)∇ψ(x) + ∫ (ψ(x + c(z, x)) − ψ(x))γ(z, x)µ(dz) où µ est de masse totale infinie. Si γ ne dépendait pas de x, nous nous trouverions dans une situation classique où le processus X pourrait être représenté comme une solution d'une équation stochastique comportant une mesure ponctuelle de Poisson de mesure d'intensité γ(z)µ(dz) ; lorsque γ dépend de x, on peut s'en représenter l'heuristique en imaginant le processus comme la trajectoire d'une particule, la loi des sauts pouvant alors dépendre de la position de la particule. Dans la première partie, nous donnons des conditions pour obtenir l'existence et l'unicité de tels processus. Ensuite, nous considérons ce type de processus comme une généralisation des PDMP ; nous montrons qu'ils peuvent être vus comme une limite d'une suite (Xᵣ(t)) de PDMP standards pour lesquels l'intensité des sauts tend vers l'infini quand r tend vers l'infini, suivant deux régimes : un lent et un rapide qui, en supposant que les processus en question sont centrés et normalisés convenablement, produit une composante de diffusion à la limite. Finalement, on prouve la récurrence au sens de Harris de X en utilisant un schéma régénératif entièrement basé sur les sauts du processus. De plus, nous dégageons des conditions explicites par rapport aux coefficients du processus qui nous permettent de contrôler la vitesse de convergence vers l'équilibre en terme d'inégalités de déviation pour des fonctionnelles additives intégrables. Dans la seconde partie, nous considérons à nouveau le même type de processus X = (Xt(x)) partant du point x. Utilisant une approche basé sur un Calcul de Malliavin fini-dimensionnel, nous étudions la régularité jointe de ce processus dans le sens suivant : on fixe b≥1 et p>1, K un ensemble compact de Rᵈ, et nous donnons des conditions suffisantes pour avoir P(Xt(x)∈dy)=pt(x,y)dy avec (x,y)↦pt(x,y) appartenant à Wᵇᵖ(K×Rᵈ) / This work is dedicated to the study of some properties concerning the d-dimensional jump type diffusion X = (Xt) with infinitesimal generator given by Lψ(x) = 1/2 ∑ aᵤᵥ(x)∂²ψ(x)/∂xᵤ∂xᵥ + g(x)∇ψ(x) + ∫ (ψ(x + c(z, x)) − ψ(x))γ(z, x)µ(dz) where µ is of infinite total mass. If γ did not depend on x, we would be in a classical situation where the process X could be represented as the solution of a stochastic equation driven by a Poisson point measure with intensity measure γ(z)µ(dz) ; when γ depends on x, we may have the heuristic idea that, if we were to imagine the process as a trajectory of a particle, the law of the jumps may depend on the position of the particle. In the first part, we give some conditions to obtain existence and uniqueness of such processes. Then, we consider this type of processes as a generalization of Piecewise Deterministic Markov Processes (PDMP) ; we show that they can be seen as a limit of a sequence (Xᵣ(t)) of standard PDMP's for which the intensity of the jumps tends to infinity as r tends to infinity, following two regimes: a slow one, which leads to a jump component with finite variation, and a rapid one which, supposing that the processes at hand are centered and renormalized in a convenient way, produces the diffusion component in the limit. Finally, we prove Harris recurrence of X using a regeneration scheme which is entirely based on the jumps of the process. Moreover we state explicit conditions in terms of the coefficients of the process allowing to control the speed of convergence to equilibrium in terms of deviation inequalities for integrable additive functionals. In the second part, we consider again the same type of process X = (Xt(x)) starting from x. Using an approach based on a finite dimensional Malliavin Calculus, we study the joint regularity of this process in the following sense : we fix b≥1 and p>1, K a compact set of Rᵈ, and we give sufficient conditions in order to have P(Xt(x)∈dy)=pt(x,y)dy with (x,y)↦pt(x,y) in Wᵇᵖ(K×Rᵈ)
|
16 |
Calcul parallèle pour les problèmes linéaires, non-linéaires et linéaires inverses en finance / Parallel computing for linear, nonlinear and linear inverse problems in financeAbbas-Turki, Lokman 21 September 2012 (has links)
De ce fait, le premier objectif de notre travail consiste à proposer des générateurs de nombres aléatoires appropriés pour des architectures parallèles et massivement parallèles de clusters de CPUs/GPUs. Nous testerons le gain en temps de calcul et l'énergie consommée lors de l'implémentation du cas linéaire du pricing européen. Le deuxième objectif est de reformuler le problème non-linéaire du pricing américain pour que l'on puisse avoir des gains de parallélisation semblables à ceux obtenus pour les problèmes linéaires. La méthode proposée fondée sur le calcul de Malliavin est aussi plus avantageuse du point de vue du praticien au delà même de l'intérêt intrinsèque lié à la possibilité d'une bonne parallélisation. Toujours dans l'objectif de proposer des algorithmes parallèles, le dernier point est l'étude de l'unicité de la solution de certains cas linéaires inverses en finance. Cette unicité aide en effet à avoir des algorithmes simples fondés sur Monte Carlo / Handling multidimensional parabolic linear, nonlinear and linear inverse problems is the main objective of this work. It is the multidimensional word that makes virtually inevitable the use of simulation methods based on Monte Carlo. This word also makes necessary the use of parallel architectures. Indeed, the problems dealing with a large number of assets are major resources consumers, and only parallelization is able to reduce their execution times. Consequently, the first goal of our work is to propose "appropriate" random number generators to parallel and massively parallel architecture implemented on CPUs/GPUs cluster. We quantify the speedup and the energy consumption of the parallel execution of a European pricing. The second objective is to reformulate the nonlinear problem of pricing American options in order to get the same parallelization gains as those obtained for linear problems. In addition to its parallelization suitability, the proposed method based on Malliavin calculus has other practical advantages. Continuing with parallel algorithms, the last point of this work is dedicated to the uniqueness of the solution of some linear inverse problems in finance. This theoretical study enables the use of simple methods based on Monte Carlo
|
17 |
A class of infinite dimensional stochastic processes with unbounded diffusionKarlsson, John January 2013 (has links)
The aim of this work is to provide an introduction into the theory of infinite dimensional stochastic processes. The thesis contains the paper A class of infinite dimensional stochastic processes with unbounded diffusion written at Linköping University during 2012. The aim of that paper is to take results from the finite dimensional theory into the infinite dimensional case. This is done via the means of a coordinate representation. It is shown that for a certain kind of Dirichlet form with unbounded diffusion, we have properties such as closability, quasi-regularity, and existence of local first and second moment of the associated process. The starting chapters of this thesis contain the prerequisite theory for understanding the paper. It is my hope that any reader unfamiliar with the subject will find this thesis useful, as an introduction to the field of infinite dimensional processes.
|
18 |
Random periodic solutions of stochastic functional differential equationsLuo, Ye January 2014 (has links)
In this thesis, we study the existence of random periodic solutions for both nonlinear dissipative stochastic functional differential equations (SFDEs) and semilinear nondissipative SFDEs in C([-r,0],R^d). Under some sufficient conditions for the existence of global semiflows for SFDEs, by using pullback-convergence technique to SFDE, we obtain a general theorem about the existence of random periodic solutions. By applying coupled forward-backward infinite horizon integral equations method, we perform the argument of the relative compactness of Wiener-Sobolev spaces in C([0,τ],C([-r,0]L²(Ω))) and the generalized Schauder's fixed point theorem to show the existence of random periodic solutions.
|
19 |
Stochastické integrály / Stochastic IntegralsLacina, Filip January 2016 (has links)
No description available.
|
20 |
Stochastické integrály / Stochastic IntegralsLacina, Filip January 2016 (has links)
No description available.
|
Page generated in 0.0811 seconds