• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Engineering Open Chromatin with Synthetic Pioneer Factors: Enhancing Mammalian Transgene Expression and Improving Cas9-Mediated Genome Editing in Closed Chromatin

January 2019 (has links)
abstract: Chromatin is the dynamic structure of proteins and nucleic acids into which eukaryotic genomes are organized. For those looking to engineer mammalian genomes, chromatin is both an opportunity and an obstacle. While chromatin provides another tool with which to control gene expression, regional density can lead to variability in genome editing efficiency by CRISPR/Cas9 systems. Many groups have attempted to de-silence chromatin to regulate genes and enhance DNA's accessibility to nucleases, but inconsistent results leave outstanding questions. Here, I test different types of activators, to analyze changes in chromatin features that result for chromatin opening, and to identify the critical biochemical features that support artificially generated open, transcriptionally active chromatin. I designed, built, and tested a panel of synthetic pioneer factors (SPiFs) to open condensed, repressive chromatin with the aims of 1) activating repressed transgenes in mammalian cells and 2) reversing the inhibitory effects of closed chromatin on Cas9-endonuclease activity. Pioneer factors are unique in their ability to bind DNA in closed chromatin. In order to repurpose this natural function, I designed SPiFs from a Gal4 DNA binding domain, which has inherent pioneer functionality, fused with chromatin-modifying peptides with distinct functions. SPiFs with transcriptional activation as their primary mechanism were able to reverse this repression and induced a stably active state. My work also revealed the active site from proto-oncogene MYB as a novel transgene activator. To determine if MYB could be used generally to restore transgene expression, I fused it to a deactivated Cas9 and targeted a silenced transgene in native heterochromatin. The resulting activator was able to reverse silencing and can be chemically controlled with a small molecule drug. Other SPiFs in my panel did not increase gene expression. However, pretreatment with several of these expression-neutral SPiFs increased Cas9-mediated editing in closed chromatin, suggesting a crucial difference between chromatin that is accessible and that which contains genes being actively transcribed. Understanding this distinction will be vital to the engineering of stable transgenic cell lines for product production and disease modeling, as well as therapeutic applications such as restoring epigenetic order to misregulated disease cells. / Dissertation/Thesis / Doctoral Dissertation Biological Design 2019

Page generated in 0.1061 seconds