• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 147
  • 21
  • 12
  • 11
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 233
  • 100
  • 92
  • 78
  • 76
  • 40
  • 37
  • 34
  • 33
  • 29
  • 29
  • 28
  • 26
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Formalismes et méthodes pour le calcul de la réponse linéaire des systèmes isolés / Computational methodologies for the linear response of isolated systems

Morinière, Maxime 15 December 2016 (has links)
La réponse linéaire de la théorie de la fonctionnelle de la densité dépendante du temps est étudiée dans le cadre du formalisme d'ondelettes du code BigDFT, qui permet d'exprimer les fonctions d'onde électroniques sur une grille de simulation dans l'espace réel. L'objectif est de déterminer un spectre d'excitations de référence pour un système et un potentiel d'échange-corrélation donnés.Il apparaît que seule une partie du spectre, concernant les transitions entre orbitales liées, peut être facilement amenée à convergence par rapport aux paramètres d'entrée de BigDFT, que sont l'extension de la grille de simulation et le nombre d'orbitales du continuum qui sont considérées pour le calcul des spectres. L'énergie de la dernière orbitale inoccupée utilisée dans les calculs se révèle d'ailleurs être un paramètre plus important que ce nombre d'orbitales inoccupées. La justification vient de l'étude de la complétude des bases formées par les orbitales de l'état fondamental du système. Tout ceci permet de porter un regard neuf sur les résultats obtenus avec le formalisme à base gaussienne, tel qu'implémenté dans le code NWChem.En ce qui concerne la convergence du spectre de plus haute énergie, concernant des transitions entre orbitales occupées et orbitales inoccupées du continuum, l'espoir d'une convergence se heurte au problème du tassement du continuum. Il faut alors songer à une manière différente de capter l'information contenue dans ce continuum.Le formalisme des états résonants, dont les fondements ont été posés lors de la première moitié du XXème siècle, est une piste très encourageante pour cela. Une étude préliminaire dans le cas du puits de potentiel carré à une dimension est donc présentée. La première étape a consisté en la détermination de ces états résonants, dont les énergies et fonctions d'onde sont complexes. Une normalisation a notamment pu leur être attribuée. Il est ensuite montré, sous certaines conditions, que la base formée par les états propres de ce potentiel, dont une partie est constituée par les états du continuum, peut être efficacement remplacée par une base discrète et complète faite d'états résonants. Des applications numériques montreront qu'ils peuvent être avantageusement utilisés pour définir la fonction de Green ou encore calculer la propagation temporelle d'un paquet d'onde. / The linear response on the time-dependent density functional theory is studied in the wavelets formalism used in the BigDFT code, that allows the representations of electronic wave-functions on a simulation grid in real space. The goal of this study is to determine a reference excitation spectrum for a given system and exchange-correlation potential.It appears that only one part of the spectrum can be easily brought to convergence with respect to the input parameters of BigDFT, which are the simulation grid extension and the number of unoccupied continuum orbitals considered in the spectrum calculation. The energy of the last unoccupied orbital used actually proves to be more important as a parameter than this number of unoccupied orbitals. This is justified by the study of the completeness of the basis sets made of the ground state orbitals of the system. This gives another point of view regarding spectrum obtained by using the Gausian basis sets formalism, as the one implemented in the code NWChem.As to the convergence of the spectrum at higher energy, concerning transitions between occupied orbitals and unoccupied orbitals of the continuum, the hope for a convergence faces the problem of the continuum collapse. One therefore has to think of another way of retrieving the data contained in this continuum.The resonant states formalism, whose foundations were laid in the first half of the 20th century, is very encouraging in this regard. A preliminary study in the case of the one-dimension square well potential is therefore presented. The first step consisted in the determination of these resonant states, whose energies and wavefunctions are complex valued in general. Their normalization was also clearly defined. It is then shown, under certain conditions, that the basis set formed by the eigenstates of this potential, including the continuum states, can be efficiently replaced by a discrete and complete basis set made of resonant states. Numerical applications also show that these states can also be advantageously used to define the Green's function or even compute the time propagation of a wavepacket.
72

Characterizing and measuring properties of continuous-variable quantum states

Ohliger, Matthias January 2012 (has links)
We investigate properties of quantum mechanical systems in the light of quantum information theory. We put an emphasize on systems with infinite-dimensional Hilbert spaces, so-called continuous-variable systems'', which are needed to describe quantum optics beyond the single photon regime and other Bosonic quantum systems. We present methods to obtain a description of such systems from a series of measurements in an efficient manner and demonstrate the performance in realistic situations by means of numerical simulations. We consider both unconditional quantum state tomography, which is applicable to arbitrary systems, and tomography of matrix product states. The latter allows for the tomography of many-body systems because the necessary number of measurements scales merely polynomially with the particle number, compared to an exponential scaling in the generic case. We also present a method to realize such a tomography scheme for a system of ultra-cold atoms in optical lattices. Furthermore, we discuss in detail the possibilities and limitations of using continuous-variable systems for measurement-based quantum computing. We will see that the distinction between Gaussian and non-Gaussian quantum states and measurements plays an crucial role. We also provide an algorithm to solve the large and interesting class of naturally occurring Hamiltonians, namely frustration free ones, efficiently and use this insight to obtain a simple approximation method for slightly frustrated systems. To achieve this goals, we make use of, among various other techniques, the well developed theory of matrix product states, tensor networks, semi-definite programming, and matrix analysis. / Die stürmische Entwicklung der Quanteninformationstheorie in den letzten Jahren brachte einen neuen Blickwinkel auf quantenmechanische Probleme. Insbesondere die fundamentale Eigenschaft der Verschränkung von Quantenzuständen spielt hierbei eine Schlüsselrolle. Einstein, Podolsky und Rosen haben 1935 versucht die Unvollständigkeit der Quantenmechanik zu demonstrieren, indem sie zeigten, dass sie keine lokale, realistische Therie ist und der Ausgang einer Messung an einem Ort von Messungen abhängen kann, die an beliebig weit entfernten Orten gemacht wurden. John Bell stellte 1964 eine, später nach ihm benannte, Ungleichung auf, die eine Grenze an mögliche Korrelationen von Messergebnissen in lokalen, realistischen Theorien gibt. Die Vorhersagen der Quatenmechanik verletzen diese Ungleichung, eine Tatsache, die 1981 von Alain Aspect und anderen auch experimentell bestätigt wurde. Solche nicht-lokalen Quantenzustände werden verschränkt'' genannt. In neuerer Zeit wurde Verschränkung nicht mehr nur als mysteriöse Eigenschaft der Quantenmechanik sondern auch als Resource für Aufgaben der Informationsverarbeitung gesehen. Ein Computer, der sich diese Eigenschaften der Quantenmechanik zu nutze macht, ein sogenannter Quantencomputer, würde es erlauben gewisse Aufgaben schnell zu lösen für die normale'' Computer zu lange brauchen. Das wichtigste Beispiel hierfür ist die Zerlegung von großen Zahlen in ihre Primfaktoren, für die Shor 1993 einen Quantenalgorithmus präsentierte. In dieser Arbeit haben wir uns mit den Eigenschaften von Quantensystemen, die durch sogenannte kontinuierliche Variablen beschrieben werden, beschäftigt. Diese sind nicht nur theoretisch sonder auch experimentell von besonderem Interesse, da sie quantenoptische Systeme beschreiben, die sich verhältnismäßig leicht im Labor präparieren, manipulieren und messen lassen. Wenn man eine vollständige Beschreibung eines Quantenzustandes erhalten will, braucht man, auf Grund der Heisenberg'schen Unschärferelation, mehrere Kopien von ihm an denen man dann Messungen durchführt. Wir haben eine Methode, compressed-sensing genannt, eingeführt um die Anzahl der nötigen Messungen substantiell zu reduzieren. Wir haben die theoretische Effizienz dieser Methode bewiesen und durch numerische Simulationen auch ihre Praktikabilität demonstriert. Desweiteren haben wir beschrieben, wie man compressed-sensing für die schon erwähnten optischen Systemen sowie für ultrakalte Atome experimentell realisieren kann. Ein zweites Hauptthema dieser Arbeit war messbasiertes Quantenrechnen. Das Standardmodell des Quantenrechnens basiert auf sogenannten Gattern, die eine genaue Kontrolle der Wechselwirkung zwischen den Bestandteilen des Quantencomputers erfordern. Messbasiertes Quantenrechnen hingegen kommt mit der Präparation eines geeigneten Quantenzustands, Resource genannt, gefolgt von einfachen Messungen auf diesem Zustand aus. Wir haben gezeigt, dass Systeme mit kontinuierlichen Variablen eine vorteilhafte Realisierung eines Quantencomputers in diesem Paradigma erlauben, es jedoch auch wichtige Beschränkungen gibt, die kompliziertere Zustandspräparationen und Messungen nötig machen.
73

Quantum many-body systems exactly solved by special functions

Hallnäs, Martin January 2007 (has links)
This thesis concerns two types of quantum many-body systems in one dimension exactly solved by special functions: firstly, systems with interactions localised at points and solved by the (coordinate) Bethe ansatz; secondly, systems of Calogero-Sutherland type, as well as certain recently introduced deformations thereof, with eigenfunctions given by natural many-variable generalisations of classical (orthogonal) polynomials. The thesis is divided into two parts. The first provides background and a few complementary results, while the second presents the main results of this thesis in five appended scientific papers. In the first paper we consider two complementary quantum many-body systems with local interactions related to the root systems CN, one with delta-interactions, and the other with certain momentum dependent interactions commonly known as delta-prime interactions. We prove, by construction, that the former is exactly solvable by the Bethe ansatz in the general case of distinguishable particles, and that the latter is similarly solvable only in the case of bosons or fermions. We also establish a simple strong/weak coupling duality between the two models and elaborate on their physical interpretations. In the second paper we consider a well-known four-parameter family of local interactions in one dimension. In particular, we determine all such interactions leading to a quantum many-body system of distinguishable particles exactly solvable by the Bethe ansatz. We find that there are two families of such systems: the first is described by a one-parameter deformation of the delta-interaction model, while the second features a particular one-parameter combination of the delta and the delta-prime interactions. In papers 3-5 we construct and study particular series representations for the eigenfunctions of a family of Calogero-Sutherland models naturally associated with the classical (orthogonal) polynomials. In our construction, the eigenfunctions are given by linear combinations of certain symmetric polynomials generalising the so-called Schur polynomials, with explicit and rather simple coefficients. In paper 5 we also generalise certain of these results to the so-called deformed Calogero-Sutherland operators. / QC 20100712
74

Approximation Techniques for Large Finite Quantum Many-body Systems

Ho, Shen Yong 03 March 2010 (has links)
In this thesis, we will show how certain classes of quantum many-body Hamiltonians with $\su{2}_1 \oplus \su{2}_2 \oplus \ldots \oplus \su{2}_k$ spectrum generating algebras can be approximated by multi-dimensional shifted harmonic oscillator Hamiltonians. The dimensions of the Hilbert spaces of such Hamiltonians usually depend exponentially on $k$. This can make obtaining eigenvalues by diagonalization computationally challenging. The Shifted Harmonic Approximation (SHA) developed here gives good predictions of properties such as ground state energies, excitation energies and the most probable states in the lowest eigenstates. This is achieved by solving only a system of $k$ equations and diagonalizing $k\times k$ matrices. The SHA gives accurate approximations over wide domains of parameters and in many cases even across phase transitions. The SHA is first illustrated using the Lipkin-Meshkov-Glick (LMG) model and the Canonical Josephson Hamiltonian (CJH) which have $\su{2}$ spectrum generating algebras. Next, we extend the technique to the non-compact $\su{1,1}$ algebra, using the five-dimensional quartic oscillator (5DQO) as an example. Finally, the SHA is applied to a $k$-level Bardeen-Cooper-Shrieffer (BCS) pairing Hamiltonian with fixed particle number. The BCS model has a $\su{2}_1 \oplus \su{2}_2 \oplus \ldots \oplus \su{2}_k$ spectrum generating algebra. An attractive feature of the SHA is that it also provides information to construct basis states which yield very accurate eigenvalues for low-lying states by diagonalizing Hamiltonians in small subspaces of huge Hilbert spaces. For Hamiltonians that involve a smaller number of operators, accurate eigenvalues can be obtained using another technique developed in this thesis: the generalized Rowe-Rosensteel-Kerman-Klein equations-of-motion method (RRKK). The RRKK is illustrated using the LMG and the 5DQO. In RRKK, solving unknowns in a set of $10\times 10$ matrices typically gives estimates of the lowest few eigenvalues to an accuracy of at least eight significant figures. The RRKK involves optimization routines which require initial guesses of the matrix representations of the operators. In many cases, very good initial guesses can be obtained using the SHA. The thesis concludes by exploring possible future developments of the SHA.
75

Brueckner theory of nuclear matter

Fuchs, Martin B. 04 December 1991 (has links)
Graduation date: 1992
76

Exploring Many-body Physics with Ultracold Atoms

LeBlanc, Lindsay Jane 31 August 2011 (has links)
The emergence of many-body physical phenomena from the quantum mechanical properties of atoms can be studied using ultracold alkali gases. The ability to manipulate both Bose-Einstein condensates (BECs) and degenerate Fermi gases (DFGs) with designer potential energy landscapes, variable interaction strengths and out-of-equilibrium initial conditions provides the opportunity to investigate collective behaviour under diverse conditions. With an appropriately chosen wavelength, optical standing waves provide a lattice potential for one target species while ignoring another spectator species. A “tune-in” scheme provides an especially strong potential for the target and works best for Li-Na, Li-K, and K-Na mixtures, while a “tune-out” scheme zeros the potential for the spectator, and is pre- ferred for Li-Cs, K-Rb, Rb-Cs, K-Cs, and 39K-40K mixtures. Species-selective lattices provide unique environments for studying many-body behaviour by allowing for a phonon-like background, providing for effective mass tuning, and presenting opportunities for increasing the phase-space density of one species. Ferromagnetism is manifest in a two-component DFG when the energetically preferred many-body configuration segregates components. Within the local density approximation (LDA), the characteristic energies and the three-body loss rate of the system all give an observable signature of the crossover to this ferromagnetic state in a trapped DFG when interactions are increased beyond kF a(0) = 1.84. Numerical simulations of an extension to the LDA that account for magnetization gradients show that a hedgehog spin texture emerges as the lowest energy configuration in the ferromagnetic regime. Explorations of strong interactions in 40K constitute the first steps towards the realization of ferromagnetism in a trapped 40K gas. The many-body dynamics of a 87Rb BEC in a double well potential are driven by spatial phase gradients and depend on the character of the junction. The amplitude and frequency characteristics of the transport across a tunable barrier show a crossover between two paradigms of superfluidity: Josephson plasma oscillations emerge for high barriers, where transport is via tunnelling, while hydrodynamic behaviour dominates for lower barriers. The phase dependence of the many-body dynamics is also evident in the observation of macroscopic quantum self trapping. Gross-Pitaevskii calculations facilitate the interpretation of system dynamics, but do not describe the observed damping.
77

Approximation Techniques for Large Finite Quantum Many-body Systems

Ho, Shen Yong 03 March 2010 (has links)
In this thesis, we will show how certain classes of quantum many-body Hamiltonians with $\su{2}_1 \oplus \su{2}_2 \oplus \ldots \oplus \su{2}_k$ spectrum generating algebras can be approximated by multi-dimensional shifted harmonic oscillator Hamiltonians. The dimensions of the Hilbert spaces of such Hamiltonians usually depend exponentially on $k$. This can make obtaining eigenvalues by diagonalization computationally challenging. The Shifted Harmonic Approximation (SHA) developed here gives good predictions of properties such as ground state energies, excitation energies and the most probable states in the lowest eigenstates. This is achieved by solving only a system of $k$ equations and diagonalizing $k\times k$ matrices. The SHA gives accurate approximations over wide domains of parameters and in many cases even across phase transitions. The SHA is first illustrated using the Lipkin-Meshkov-Glick (LMG) model and the Canonical Josephson Hamiltonian (CJH) which have $\su{2}$ spectrum generating algebras. Next, we extend the technique to the non-compact $\su{1,1}$ algebra, using the five-dimensional quartic oscillator (5DQO) as an example. Finally, the SHA is applied to a $k$-level Bardeen-Cooper-Shrieffer (BCS) pairing Hamiltonian with fixed particle number. The BCS model has a $\su{2}_1 \oplus \su{2}_2 \oplus \ldots \oplus \su{2}_k$ spectrum generating algebra. An attractive feature of the SHA is that it also provides information to construct basis states which yield very accurate eigenvalues for low-lying states by diagonalizing Hamiltonians in small subspaces of huge Hilbert spaces. For Hamiltonians that involve a smaller number of operators, accurate eigenvalues can be obtained using another technique developed in this thesis: the generalized Rowe-Rosensteel-Kerman-Klein equations-of-motion method (RRKK). The RRKK is illustrated using the LMG and the 5DQO. In RRKK, solving unknowns in a set of $10\times 10$ matrices typically gives estimates of the lowest few eigenvalues to an accuracy of at least eight significant figures. The RRKK involves optimization routines which require initial guesses of the matrix representations of the operators. In many cases, very good initial guesses can be obtained using the SHA. The thesis concludes by exploring possible future developments of the SHA.
78

Exploring Many-body Physics with Ultracold Atoms

LeBlanc, Lindsay Jane 31 August 2011 (has links)
The emergence of many-body physical phenomena from the quantum mechanical properties of atoms can be studied using ultracold alkali gases. The ability to manipulate both Bose-Einstein condensates (BECs) and degenerate Fermi gases (DFGs) with designer potential energy landscapes, variable interaction strengths and out-of-equilibrium initial conditions provides the opportunity to investigate collective behaviour under diverse conditions. With an appropriately chosen wavelength, optical standing waves provide a lattice potential for one target species while ignoring another spectator species. A “tune-in” scheme provides an especially strong potential for the target and works best for Li-Na, Li-K, and K-Na mixtures, while a “tune-out” scheme zeros the potential for the spectator, and is pre- ferred for Li-Cs, K-Rb, Rb-Cs, K-Cs, and 39K-40K mixtures. Species-selective lattices provide unique environments for studying many-body behaviour by allowing for a phonon-like background, providing for effective mass tuning, and presenting opportunities for increasing the phase-space density of one species. Ferromagnetism is manifest in a two-component DFG when the energetically preferred many-body configuration segregates components. Within the local density approximation (LDA), the characteristic energies and the three-body loss rate of the system all give an observable signature of the crossover to this ferromagnetic state in a trapped DFG when interactions are increased beyond kF a(0) = 1.84. Numerical simulations of an extension to the LDA that account for magnetization gradients show that a hedgehog spin texture emerges as the lowest energy configuration in the ferromagnetic regime. Explorations of strong interactions in 40K constitute the first steps towards the realization of ferromagnetism in a trapped 40K gas. The many-body dynamics of a 87Rb BEC in a double well potential are driven by spatial phase gradients and depend on the character of the junction. The amplitude and frequency characteristics of the transport across a tunable barrier show a crossover between two paradigms of superfluidity: Josephson plasma oscillations emerge for high barriers, where transport is via tunnelling, while hydrodynamic behaviour dominates for lower barriers. The phase dependence of the many-body dynamics is also evident in the observation of macroscopic quantum self trapping. Gross-Pitaevskii calculations facilitate the interpretation of system dynamics, but do not describe the observed damping.
79

Effective interactions within an oscillator basis /

Luu, Thomas C., January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 86-89).
80

Development of Improved Models for Gas Sorption Simulation

Mclaughlin, Keith 01 January 2013 (has links)
Computational chemistry offers one the ability to develop a better understanding of the complex physical and chemical interactions that are fundamental to macro- and mesoscopic processes that are seen in laboratory experiments, industrial processes, and ordinary, everyday life. For many systems, the physics of interest occur at the molecular or atomistic levels, and in these cases, computational modeling and two well refined simulation techniques become invaluable: Monte Carlo (MC) and molecular dynamics (MD). In this work, two well established problems were tackled. First, models and potentials for various gas molecules were produced and refined from first principles. These models, although based on work done previously by Belof et al., are novel due to the inclusion of many-body van der Waals interactions, advanced r-12 repulsion combining rules for treating unlike intra- and intermolecular interactions, and highly-efficient treatment of induction interactions. Second, a multitude of models were developed and countless MD simulations were performed in order to describe and understand the giant frictional anisotropy of d-AlCoNi, first observed by Park et al. in 2005.

Page generated in 0.0414 seconds