1 |
The Structure of Bovine Mitochondrial ATP Synthase by Single Particle Electron CryomicroscopyBaker, Lindsay 20 August 2012 (has links)
Single particle electron cryomicroscopy (cryo-EM) is a method of structure determination that uses many randomly oriented images of the specimen to construct a three-dimensional density map. In this thesis, single particle cryo-EM has been used to determine the structure of intact adenosine triphosphate (ATP) synthase from bovine heart mitochondria, an approximately 550 kDa membrane protein complex. In respiring organisms, ATP synthase is responsible for synthesizing the majority of ATP, a molecule that serves as an energy source for many cellular reactions. In order to understand the mechanism of ATP synthase, knowledge of the arrangement of subunits in the intact complex is necessary. To obtain maps of intact ATP synthase showing internal density distributions by single particle cryo-EM, methodological improvements to image acquisition, map refinement, and data selection were developed. Further, a novel segmentation algorithm was developed to aid in interpretation of maps. The use of these tools allowed for construction and interpretation of two maps of ATP synthase, solubilized in different membrane mimetics, in which the arrangement of subunits could be identified. These maps revealed interactions within the complex important for its function. In addition, evidence was obtained for curvature of membrane mimetics around ATP synthase, suggesting a role for the complex in maintenance of mitochondrial membrane morphology.
|
2 |
The Structure of Bovine Mitochondrial ATP Synthase by Single Particle Electron CryomicroscopyBaker, Lindsay 20 August 2012 (has links)
Single particle electron cryomicroscopy (cryo-EM) is a method of structure determination that uses many randomly oriented images of the specimen to construct a three-dimensional density map. In this thesis, single particle cryo-EM has been used to determine the structure of intact adenosine triphosphate (ATP) synthase from bovine heart mitochondria, an approximately 550 kDa membrane protein complex. In respiring organisms, ATP synthase is responsible for synthesizing the majority of ATP, a molecule that serves as an energy source for many cellular reactions. In order to understand the mechanism of ATP synthase, knowledge of the arrangement of subunits in the intact complex is necessary. To obtain maps of intact ATP synthase showing internal density distributions by single particle cryo-EM, methodological improvements to image acquisition, map refinement, and data selection were developed. Further, a novel segmentation algorithm was developed to aid in interpretation of maps. The use of these tools allowed for construction and interpretation of two maps of ATP synthase, solubilized in different membrane mimetics, in which the arrangement of subunits could be identified. These maps revealed interactions within the complex important for its function. In addition, evidence was obtained for curvature of membrane mimetics around ATP synthase, suggesting a role for the complex in maintenance of mitochondrial membrane morphology.
|
Page generated in 0.1417 seconds