• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sulfur-Related Conservation Concerns in Marine Archaeological Wood : The Origin, Speciation and Distribution of Accumulated Sulfur with Some Remedies for the <i>Vasa</i>

Fors, Yvonne January 2008 (has links)
<p>Synchrotron-based sulfur spectroscopy reveals a common concern for marine archaeological wood from seawater: accumulation of reduced sulfur compounds in two pathways. The distribution of sulfur species in the oak wood cell structure was mapped by scanning x-ray spectro-microscopy (SXM). Organically bound sulfur was found within lignin-rich parts, identified mainly as thiols and disulfides by sulfur K-edge x-ray absorption near edge structure (XANES) spectroscopy. Particles of iron sulfides, which may form in the presence of corroding iron, appeared in wood cavities. Cores scanned by x-ray fluorescence (XRF) show that high sulfur accumulation is restricted to the surface layers for the Swedish shipwreck <i>Vasa</i>, while the distribution is rather uniform throughout the hull timbers of the <i>Mary Rose</i>, U.K. Laboratory experiments, exposing fresh pine to simulated seabed conditions, show that the organically bound sulfur develop in reactions between lignin, exposed by cellulose-degrading erosion bacteria, and hydrogen sulfide produced <i>in situ</i> by scavenging sulfate reducing bacteria. With bacteria inoculated from shipwreck samples also iron sulfides formed. The iron sulfides oxidise in high humidity, and are the probable main cause of the numerous outbreaks on the Vasa’s hull of acidic sulfate salts, which were identified by x-ray powder diffraction (XRD). The iron ions catalyse several wood-degrading oxidative processes. Multi-elemental analyses were performed by scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (ESCA). The present amounts of total S remaining in the <i>Vasa</i> and the <i>Mary Rose</i> are estimated to at least 2 tonnes. After the <i>Vasa´s</i> spray treatment with polyethylene glycol solutions ceased in 1979, the continuing oxidation processes are estimated to have produced 2 tonnes of sulfuric acid in the wood. Laboratory experiments to gently neutralize acidic <i>Vasa</i> wood by ammonia gas have been conducted with promising results.</p>
2

Sulfur-Related Conservation Concerns in Marine Archaeological Wood : The Origin, Speciation and Distribution of Accumulated Sulfur with Some Remedies for the Vasa

Fors, Yvonne January 2008 (has links)
Synchrotron-based sulfur spectroscopy reveals a common concern for marine archaeological wood from seawater: accumulation of reduced sulfur compounds in two pathways. The distribution of sulfur species in the oak wood cell structure was mapped by scanning x-ray spectro-microscopy (SXM). Organically bound sulfur was found within lignin-rich parts, identified mainly as thiols and disulfides by sulfur K-edge x-ray absorption near edge structure (XANES) spectroscopy. Particles of iron sulfides, which may form in the presence of corroding iron, appeared in wood cavities. Cores scanned by x-ray fluorescence (XRF) show that high sulfur accumulation is restricted to the surface layers for the Swedish shipwreck Vasa, while the distribution is rather uniform throughout the hull timbers of the Mary Rose, U.K. Laboratory experiments, exposing fresh pine to simulated seabed conditions, show that the organically bound sulfur develop in reactions between lignin, exposed by cellulose-degrading erosion bacteria, and hydrogen sulfide produced in situ by scavenging sulfate reducing bacteria. With bacteria inoculated from shipwreck samples also iron sulfides formed. The iron sulfides oxidise in high humidity, and are the probable main cause of the numerous outbreaks on the Vasa’s hull of acidic sulfate salts, which were identified by x-ray powder diffraction (XRD). The iron ions catalyse several wood-degrading oxidative processes. Multi-elemental analyses were performed by scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (ESCA). The present amounts of total S remaining in the Vasa and the Mary Rose are estimated to at least 2 tonnes. After the Vasa´s spray treatment with polyethylene glycol solutions ceased in 1979, the continuing oxidation processes are estimated to have produced 2 tonnes of sulfuric acid in the wood. Laboratory experiments to gently neutralize acidic Vasa wood by ammonia gas have been conducted with promising results.

Page generated in 0.1113 seconds