• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Seasonal Hidden Markov Models for Stochastic Time Series with Periodically Varying Characteristics

Lewis, Arthur M. 05 July 1995 (has links)
Novel seasonal hidden Markov models (SHMMs) for stochastic time series with periodically varying characteristics are developed. Nonlinear interactions among SHMM parameters prevent the use of the forward-backward algorithms which are usually used to fit hidden Markov models to a data sequence. Instead, Powell's direction set method for optimizing a function is repeatedly applied to adjust SHMM parameters to fit a data sequence. SHMMs are applied to a set of meteorological data consisting of 9 years of daily rain gauge readings from four sites. The fitted models capture both the annual patterns and the short term persistence of rainfall patterns across the four sites.

Page generated in 0.1075 seconds