1 |
Representations of Hecke algebras and the Alexander polynomialBlack, Samson, 1979- 06 1900 (has links)
viii, 50 p. : ill. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / We study a certain quotient of the Iwahori-Hecke algebra of the symmetric group Sd , called the super Temperley-Lieb algebra STLd. The Alexander polynomial of a braid can be computed via a certain specialization of the Markov trace which descends to STLd. Combining this point of view with Ocneanu's formula for the Markov trace and Young's seminormal form, we deduce a new state-sum formula for the Alexander polynomial. We also give a direct combinatorial proof of this result. / Committee in charge: Arkady Vaintrob, Co-Chairperson, Mathematics
Jonathan Brundan, Co-Chairperson, Mathematics;
Victor Ostrik, Member, Mathematics;
Dev Sinha, Member, Mathematics;
Paul van Donkelaar, Outside Member, Human Physiology
|
Page generated in 0.0762 seconds