Spelling suggestions: "subject:"marks.""
11 |
Konsumvertragsrecht und E-Commerce eine Übersicht /Balscheit, Philipp. January 2005 (has links)
Diss. Jur. Univ. Basel, 2003/2004.
|
12 |
The asymptotic elasticity of utility functions and optimal investment in incomplete marketsKramkov, Dimitrij O., Schachermayer, Walter January 1999 (has links) (PDF)
The paper studies the problem of maximizing the expected utility of terminal wealth in the framework of a general incomplete semimartingale model of a financial market. We show that the necessary and sufficient condition on a utility function for the validity of several key assertions of the theory to hold true is the requirement that the asymptotic elasticity of the utility function is strictly less then one. (author's abstract) / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
13 |
Optimal investment in incomplete markets when wealth may become negativeSchachermayer, Walter January 2000 (has links) (PDF)
This paper accompanies a previous one from 1999 by D. Kramkov and the present author. There, we considered utility functions $U:\R_+ \to \R$ satisfying the Inada conditions $U'(0)=\infty$ and $U'(\infty)=0$, in the present paper we consider utility functions $U:\R\to\R$ which are finitely valued, for all $x\inftyn\R$, and satisfy $U'(-\infty)=\infty$ and $U'(\infty)=0$. A typical example of this situation is the exponential utility $U(x)=- \e^(-x)$. In the setting of the former paper the following crucial condition on the asymptotic elasticity of $U$, as $x$ tends to $+\infty$, was isolated: $\limsup_(x\to +\infty) \frac(x U'(x))(U(x))<1$. This condition was found to be necessary and sufficient for the existence of the optimal investment as well as other key assertions of the related duality theory to hold true, if we allow for general semi-martingales to model a (not necessarily complete) financial market. In the setting of the present paper this condition has to be accompanied by a similar condition on the asymptotic elasticity of $U$, as $x$ tends to $-\infty$, namely, $\liminf_(x\to-\infty) \frac(x U'(x))(U(x))>1$. If both conditions are satisfied - we then say that the utility function $U$ has reasonable asymptotic elasticity - we prove an existence theorem for the optimal investment in a general semi-martingale model of a financial market and for a utility function $U:\R\to\R$ , which is finitely valued on all of $\R$; this theorem is parallel to the main result of the former paper. We give examples showing that the reasonable asymptotic elasticity of $U$ also is a necessary condition for several key assertions of the theory to hold true. (author's abstract) / Series: Working Papers SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
|
14 |
Finanzintermediäre am Markt für Unternehmenskontrolle : USA und Bundesrepublik Deutschland im Vergleich /Kaiser, Dirk. January 1994 (has links)
FernUniversiẗat, Diss., 1994--Hagen.
|
15 |
Internationales Marketingmanagement im Osten Europas : ein theoriegeleitetes Modell zur Ableitung praxisinduzierter Konzepte für die Erschließung von Transformationsmärkten /Pezoldt, Kerstin. January 2006 (has links)
Zugl.: Ilmenau, Techn. Universiẗat, Habil.-Schr., 2003/2004.
|
16 |
La régulation internationale du marché électronique /Cachard, Olivier. January 2002 (has links) (PDF)
Univ., Diss.--Paris, 2001.
|
17 |
Die Einführung des E-Commerce im Einzelhandel : eine komparative Analyse /Woldt, Fritz. January 2007 (has links)
Diss. Univ. des Saarlandes, 2007.
|
18 |
Abschied vom Bedarfsmarktkonzept bei der Marktabgrenzung?Müller, Christian January 2006 (has links)
Zugl.: Tübingen, Univ., Diss., 2006
|
19 |
Marke und Markenführung : eine institutionstheoretische Analyse /Dörtelmann, Thomas. Unknown Date (has links)
Universiẗat, Diss., 1997--Bochum.
|
20 |
Pricing risks in incomplete markets : an application to industrial reinsurance /Niederau, Harry. January 2001 (has links) (PDF)
Diss. Wirtsch.-wiss. Zürich, 2000. / Literaturverz.
|
Page generated in 0.0467 seconds