• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Att använda maskininlärning som försvar mot desinformation / The use of machine learning as defense against disinformation

Rundquist, Felix January 2023 (has links)
Desinformation, eller fake news som det kallas i vissa sammanhang, är ett problem som i samband med internet blivit allt större. Vare sig det gäller politiska val, falska påståenden om Covid-19 eller krigspropaganda så lever vi idag i vad vissa kallar för en infodemi. Begreppet syftar på det hav av både sann och falsk information som finns inom den digitala världen idag som det är väldigt lätt att drunkna i (World Health Organisation, 2020). Det ökade hotet har inte bara gjort det mer relevant att forska om desinformation som problem men även för forskning som ämnar att lösa problemet. Det finns flera olika typer av lösningar men maskininlärningsalgoritmer är en av de vanligaste samt det som detta arbete har undersökt (Gradon et al., 2021). Den frågeställning som arbetet har haft som mål att besvara är följande:“Vad är det som gör maskininlärning till ett effektivt skydd när det används för att identifiera desinformation?” Genom en kvalitativ fallstudie har semistrukturerade intervjuer genomförts med målet att besvara frågan mer på djupet och i detalj. Med metoden genererades ett resultat som förhoppningsvis underlättar att avgöra vad som gör maskininlärningsalgoritmer effektiva på att identifiera desinformation. I resultatet framkom det totalt 11 olika delområden där flera kategoriseras som argument till varför det är en effektiv lösning, samt argument som talar för att de inte är det. Det gjordes även fynd i form av förbättringsförslag som skulle kunna öka effektiviteten. Positiva argument som hittades är följande: 1) Maskininlärning är automatiserat, 2) Maskininlärningsalgoritmer arbetar snabbare än människor, 3) Maskininlärning kan agera snabbt mot nya hot, 4) Maskininlärning hittar mönster enklare än vad människor gör, 5) Maskininlärningsalgoritmer blir bättre ju mer de används. Negativa arguments som hittades är: 6) Maskininlärningsalgoritmer kan manipuleras, 7) Maskininlärningsalgoritmer kan missbrukas, 8) Hur processen går till med maskininlärning kan vara otydlig. Förbättringsförslag som hittades är: 9) Manuellövervakning av maskininlärningsalgoritmer, 10) Nya tekniker inom maskininlärning, 11) Att kombinera maskininlärningsalgoritmer med filter.
2

Estimation of Voltage Drop in Power Circuits using Machine Learning Algorithms : Investigating potential applications of machine learning methods in power circuits design / Uppskattning av spänningsfall i kraftkretsar med hjälp av maskininlärningsalgoritmer : Undersöka potentiella tillämpningar av maskininlärningsmetoder i kraftkretsdesign

Koutlis, Dimitrios January 2023 (has links)
Accurate estimation of voltage drop (IR drop), in Application-Specific Integrated Circuits (ASICs) is a critical challenge, which impacts their performance and power consumption. As technology advances and die sizes shrink, predicting IR drop fast and accurate becomes increasingly challenging. This thesis focuses on exploring the application of Machine Learning (ML) algorithms, including Extreme Gradient Boosting (XGBoost), Convolutional Neural Network (CNN) and Graph Neural Network (GNN), to address this problem. Traditional methods of estimating IR drop using commercial tools are time consuming, especially for complex designs with millions of transistors. To overcome that, ML algorithms are investigated for their ability to provide fast and accurate IR drop estimation. This thesis utilizes electrical, timing and physical features of the ASIC design as input to train the ML models. The scalability of the selected features allows for their effective application across various ASIC designs with very few adjustments. Experimental results demonstrate the advantages of ML models over commercial tools, offering significant improvements in prediction speed. Notably, GNNs, such as Graph Convolutional Network (GCN) models showed promising performance with low prediction errors in voltage drop estimation. The incorporation of graph-structures models opens new fields of research for accurate IR drop prediction. The conclusions drawn emphasize the effectiveness of ML algorithms in accurately estimating IR drop, thereby optimizing ASIC design efficiency. The application of ML models enables faster predictions and noticeably reducing calculation time. This contributes to enhancing energy efficiency and minimizing environmental impact through optimised power circuits. Future work can focus on exploring the scalability of the models by training on a smaller portion of the circuit and extrapolating predictions to the entire design seems promising for more efficient and accurate IR drop estimation in complex ASIC designs. These advantages present new opportunities in the field and extend the capabilities of ML algorithms in the task of IR drop prediction. / Noggrann uppskattning av spänningsfallet (IR-fall), i ASIC är en kritisk utmaning som påverkar deras prestanda och strömförbrukning. När tekniken går framåt och formstorlekarna krymper, blir det allt svårare att förutsäga IR-fall snabbt och exakt. Denna avhandling fokuserar på att utforska tillämpningen av ML-algoritmer, inklusive XGBoost, CNN och GNN, för att lösa detta problem. Traditionella metoder för att uppskatta IR-fall med kommersiella verktyg är tidskrävande, särskilt för komplexa konstruktioner med miljontals transistorer. För att övervinna det undersöks ML-algoritmer för deras förmåga att ge snabb och exakt IR-falluppskattning. Denna avhandling använder elektriska, timing och fysiska egenskaper hos ASIC-designen som input för att träna ML-modellerna. Skalbarheten hos de valda funktionerna möjliggör deras effektiva tillämpning över olika ASIC-designer med mycket få justeringar. Experimentella resultat visar fördelarna med ML-modeller jämfört med kommersiella verktyg, och erbjuder betydande förbättringar i förutsägelsehastighet. Noterbart är att GNNs, såsom GCN-modeller, visade lovande prestanda med låga prediktionsfel vid uppskattning av spänningsfall. Införandet av grafstrukturmodeller öppnar nya forskningsfält för exakt IRfallförutsägelse. De slutsatser som dras betonar effektiviteten hos MLalgoritmer för att noggrant uppskatta IR-fall, och därigenom optimera ASICdesigneffektiviteten. Tillämpningen av ML-modeller möjliggör snabbare förutsägelser och märkbart minskad beräkningstid. Detta bidrar till att förbättra energieffektiviteten och minimera miljöpåverkan genom optimerade kraftkretsar. Framtida arbete kan fokusera på att utforska skalbarheten hos modellerna genom att träna på en mindre del av kretsen och att extrapolera förutsägelser till hela designen verkar lovande för mer effektiv och exakt IR-falluppskattning i komplexa ASIC-designer. Dessa fördelar ger nya möjligheter inom området och utökar kapaciteten hos ML-algoritmer i uppgiften att förutsäga IR-fall.
3

Applied Machine Learning Predicts the Postmortem Interval from the Metabolomic Fingerprint

Arpe, Jenny January 2024 (has links)
In forensic autopsies, accurately estimating the postmortem interval (PMI) is crucial. Traditional methods, relying on physical parameters and police data, often lack precision, particularly after approximately two days have passed since the person's death. New methods are increasingly focusing on analyzing postmortem metabolomics in biological systems, acting as a 'fingerprint' of ongoing processes influenced by internal and external molecules. By carefully analyzing these metabolomic profiles, which span a diverse range of information from events preceding death to postmortem changes, there is potential to provide more accurate estimates of the PMI. The limitation of available real human data has hindered comprehensive investigation until recently. Large-scale metabolomic data collected by the National Board of Forensic Medicine (RMV, Rättsmedicinalverket) presents a unique opportunity for predictive analysis in forensic science, enabling innovative approaches for improving  PMI estimation. However, the metabolomic data appears to be large, complex, and potentially nonlinear, making it difficult to interpret. This underscores the importance of effectively employing machine learning algorithms to manage metabolomic data for the purpose of PMI predictions, the primary focus of this project.  In this study, a dataset consisting of 4,866 human samples and 2,304 metabolites from the RMV was utilized to train a model capable of predicting the PMI. Random Forest (RF) and Artificial Neural Network (ANN) models were then employed for PMI prediction. Furthermore, feature selection and incorporating sex and age into the model were explored to improve the neural network's performance.  This master's thesis shows that ANN consistently outperforms RF in PMI estimation, achieving an R2 of 0.68 and an MAE of 1.51 days compared to RF's R2 of 0.43 and MAE of 2.0 days across the entire PMI-interval. Additionally, feature selection indicates that only 35% of total metabolites are necessary for comparable results with maintained predictive accuracy. Furthermore, Principal Component Analysis (PCA) reveals that these informative metabolites are primarily located within a specific cluster on the first and second principal components (PC), suggesting a need for further research into the biological context of these metabolites.  In conclusion, the dataset has proven valuable for predicting PMI. This indicates significant potential for employing machine learning models in PMI estimation, thereby assisting forensic pathologists in determining the time of death. Notably, the model shows promise in surpassing current methods and filling crucial gaps in the field, representing an important step towards achieving accurate PMI estimations in forensic practice. This project suggests that machine learning will play a central role in assisting with determining time since death in the future.

Page generated in 0.1179 seconds