• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

USING REINFORCEMENT LEARNING FOR ACTIVE SHOOTER MITIGATION

Robert Eugen Bott (11791199) 20 December 2021 (has links)
This dissertation investigates the value of deep reinforcement learning (DRL) within an agent-based model (ABM) of a large open-air venue. The intent is to reduce civilian casualties in an active shooting incident (ASI). There has been a steady increase of ASIs in the United States of America for over 20 years, and some of the most casualty-producing events have been in open spaces and open-air venues. More research should be conducted within the field to help discover policies that can mitigate the threat of a shooter in extremis. This study uses the concept of dynamic signage, controlled by a DRL policy, to guide civilians away from the threat and toward a safe exit in the modeled environment. It was found that a well-trained DRL policy can significantly reduce civilian casualties as compared to baseline scenarios. Further, the DRL policy can assist decision makers in determining how many signs to use in an environment and where to place them. Finally, research using DRL in the ASI space can yield systems and policies that will help reduce the impact of active shooters during an incident.

Page generated in 0.0582 seconds