• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of the New IEC International Design Standard for Offshore Wind Turbines to a Reference Site in the Massachusetts Offshore Wind Energy Area

Roach, Samuel C 21 March 2022 (has links)
This thesis summarizes the simulation and analysis performed for the MassCEC project described herein. The intent was to perform a “dry run” of the new IEC offshore wind turbine design standard, IEC 61400-3-1 and to illustrate the use of that standard in the Massachusetts Offshore Wind Energy Area. IEC 61400-3-1 is a design standard used to ensure wind turbine structural performance over the design life of the machine. Each installed wind turbine must be certified by a Certified Verification Agent using this standard before installation. The certification process typically uses a structural dynamics model to predict a turbine’s structural response in the presence of a range of operational conditions and meteorological oceanographic conditions, which are codified into Design Load Cases. The area in question is located approximately 24 km of south of Martha’s Vineyard with an assumed water depth of 40 m. The National Renewable Energy Laboratory’s FAST software (V8.12) was used to perform simulations of a large subset of the DLCs. Wind data files were generated using NREL’s TurbSim and IECWind. This thesis discusses the instructions of the standard, preparation for simulation of Design Load Cases, and analysis of results. Results from simulations show the application of the standard in detail as applied to a reference turbine. Limitations and ambiguities of the standard in the simulation of control failure cases are analyzed. The application of the standard to hurricane loading is also analyzed alongside an example case for a Category 5 hurricane. The standard is found to be fundamentally reasonable in application to a reference turbine in the Massachusetts Offshore Wind Energy Area.

Page generated in 0.0632 seconds