Spelling suggestions: "subject:"matematiska optimering""
1 |
Mathematical Optimization for the Test Case Prioritization ProblemFelding, Eric January 2022 (has links)
Regression testing is the process of testing software to make sure changes to the software will not change the functionality. With growing test suites theneed to prioritize arises. This thesis explores how to weigh factors such as the number of fails detected, days since latest test case execution, and coverage. The prioritization is done over multiple test systems, software branches, and over many test sessions where the software can change in-between. With data provided by an industrial partner, we evaluate different ways to prioritize. The developed mathematical model could not cope with the size of the problem, whereas a simulated annealing approach based on said model proved highly successful. We also found that prioritizing test cases related to recent codechanges was effective. / Regressionstestning är processen att testa mjukvara för att säkerställa att ändringar av mjukvaran inte kommer att ändra funktionaliteten. Med växande testsviter uppstår behovet av att prioritera. Det här examensarbetet undersöker hur man väger faktorer som antalet upptäckta underkända testfall, dagar sedan testfallen senast kördes och täckning. Prioriteringen görs över flera testsystem, mjukvarugrenar och över många testsessioner där mjukvaran kan ändras däremellan. Med data från en industriell partner utvärderar vi olika sätt att prioritera. Den utvecklade matematiska modellen kunde inte hantera problemets storlek, medan en simulerad kylningsmetod baserad på denna modell visade sig vara mycket framgångsrik. Vi fann också att prioritering enligt ändringar som gjorts i mjukvaran var effetivt
|
2 |
Decomposition Methods for a Makespan Arc Routing ProblemTondel, Gero Kristoffer January 2024 (has links)
This thesis explores the use of a column generation method, a subgradient method, and a logic-based Benders decomposition method on a minimized makespan K-rural postman problem. The K-rural postman problem here describes a search and rescue mission using multiple identical unmanned aerial vehicles (UAVs) to cover an area, represented as a complete graph. Each decomposition method has a separate problem for each UAV. In the subgradient and column generation case, a heuristic is used to find an improved upper bound for the makespan. This upper bound can in turn be used to decrease the feasible regions of the subproblems. Moreover, because the subproblems are slow to solve, a maximum calculation time is used, resulting in a feasible solution and a lower bound for each subproblem. These two modifications to the decomposition methods result in a non-standard behaviour. Multiple fictional problem instances of different sizes and numbers of UAVs were generated and used for evaluating the methods. A maximal time limit is used in these instances. We conclude that solving the original, non-decomposed, problem for smaller instances with a standard solver is faster and gives better results than the decomposition methods. For larger instances, solving the non-decomposed model led to memory issues on several occasions. However, the suggested subgradient and column generation methods can solve every problem. The logic-based Benders decomposition method performed best on instances with multiple UAVs, but had issues when fewer UAVs are utilized. / Den här masteruppsatsen utforskar användningen av en kolumngenereringsmetod, en subgradientmetod och en logikbaserad Benders dekompositionsmetod på en variant av lantbrevbärarproblemet. Vårat brevbärarprolem beskriver sök- och räddningsuppdrag där $K$ drönare används för att avsöka ett område med målfunktionen att minimera flygtiden för den långsammaste drönaren. Varje dekompositionsmetod använder sig av ett problem för varje drönare. I subgradient- och kolumngenereringsmetoden användes en heuristik för att hitta en bättre övre begränsning till drönarnas flygtid. Den förbättrade övre begränsningen kunde sedan användas för att minska det tillåtna området för de mindre problemen. Eftersom de mindre problem var svårlösta, användes en maximal beräkningstid vilket resulterade i att en tillåten lösning och undre gräns gavs för varje mindre problem. Dessa två modifikationer resulterade i icke typiska beteenden. Metoderna utvärderades på flera fiktiva testinstanser av olika storlekar där antalet drönare varierar. En tidsbegränsning används på varje probleminstans. Slutsatserna från uppsatsen är de original brevbärare problemet ger bäst lösning och snabbast lösningstid i de mindre instanserna. Vid lösning av större probleminstanser, gav original problemet flerfaldiga gånger minnesproblem. Subgradient- och kolumngenereringsmetoden kunde däremot lösa varje probleminstans inom tidsbegränsningen, vilket gjorde de mer pålitliga. Logikbaserade Benders dekompositionsmetoden presterade bättre i instanser med flera drönare, men stötte på problem i instanser med färre drönare.
|
Page generated in 0.1123 seconds