• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 158
  • 10
  • Tagged with
  • 168
  • 168
  • 168
  • 37
  • 30
  • 22
  • 22
  • 22
  • 17
  • 17
  • 17
  • 17
  • 16
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Corrosion behavior of lead-free and dezincification resistant brass alloys in tap water / Korrosionsbeteende hos blyfria och avzinkningsbeständiga mässingslegeringar i kranvatten

Alexis, naza January 2021 (has links)
Avzinkningshärdiga och blyfria mässingslegeringar används i stor utsträckning för att ersätta blyinnehållande mässingslegeringar som används för dricksvattensapplikationer. På grund av det begränsade antalet korrosionsstudier av dessa legeringar är syftet med denna studie att belysa hur vattensammansättning, temperatur och exponeringstid kan påverka legeringarnas korrosionsegenskaper. Tre avzinkningshärdiga mässingslegeringar studerades i kranvatten; två blyfria mässingslegeringar (CW511L och CW724R) och en blyinnehållande mässingslegering (CW602N) som betraktades som ett referensmaterial. En kombination av elektrokemiska, mikroskopiska och ytanalystekniker användes för att utforska korrosionstyp, mekanismer samt korrosionshastighet. Även om samtliga legeringar visade godkända egenskaper i avzinkningstestet enligt ISO 6509-1:2014 var målet att bedöma deras korrosionsbeteende i kranvatten. Vattenkemin justerades för att undersöka effekten av pH, kloridkoncentration och alkalinitet hos de tre mässingslegeringarna under kortvarig exponeringstid (24 timmar). Vattnets korrosivitet varierade beroende på mässingslegeringens sammansättning. Det visade sig att CW511L var känsligare för höga kloridkoncentrationer (44.7 mg/L) och hög alkalinitet (310 mg/L) än för lågt pH (6.9). Det motsatta observerades dock för både CW724R och CW602N. Testvattnets aggressivitet påverkades också av temperaturen när den ökades från 22 °C till 50 °C under exponering i 24 timmar. Medan ingen tydlig avzinkning upptäcktes observerades en kombination av både allmän och lokal korrosion i varierande utsträckning mellan de olika legeringarna. Initieringen av det lokala korrosionsangreppet varierade både med testvattnets kemi och med legeringssammansättningen. Medan CW724R och CW602N bägge uppvisade hög känslighet för lokal korrosion i vattnet med högst pH (8.2), var CW511L mer känslig i det vatten med lågt pH (6.9) vid 50 °C. Effekten av exponeringstid undersöktes i vattnet med högst pH (8.2) för de tre mässingslegeringarna upp till 72 dagar. Korrosionshastigheten baserad på viktminskning visade en förväntad hög korrosionshastighet som minskade med kontinuerlig exponeringstid, vilket ledde till en låg korrosionshastighet för alla tre mässingslegeringarna efter 72 dagar. De blyfria mässingslegeringar uppvisade ur detta perspektiv goda korrosionsegenskaper som är konkurrenskraftiga med mässing som innehåller bly. / Dezincification resistant (DZR) and lead-free brass alloys continue to be widely applied replacing lead containing brasses in the drinking water sector. Due to the limited number of corrosion studies of these alloys in tap water, the present thesis was initiated with the aim to understand how the water type, its temperature and exposure duration can affect the corrosion behavior. Three DZR brass alloys were studied in order to evaluate their corrosion behavior in tap water of varying characteristics. The alloys included were two lead-free brasses (CW511L and CW724R) and a leaded brass alloy (CW602N) considered as a reference material. A combination of electrochemical, microscopic and surface analytical techniques were adopted to explore the corrosion form, mechanisms and corrosion rate. While these alloys passed the dezincification test as per ISO 6509-1:2014, the aim was to assess their corrosion performance in tap water. The influence of water chemistry parameters including pH, chloride concentration and alkalinity on the corrosion resistance of the three DZR alloys was investigated in short-term exposures (24 h). Depending on the brass alloy, the corrosivity of the test waters varied. The results show grade CW511L to be more sensitive in tap water of higher chloride concentration (44.7 mg/L) and alkalinity (310 mg/L) compared with low pH (6.9). However, opposite results were obtained for both CW724R and CW602N. The corrosivity of the test water was also affected by the temperature when increased from 22°C to 50°C during 24 h of immersion. While no dezincification features were observed on the surfaces, a combination of general and localized corrosion was observed to a largely variable extent between the alloys. The extent of initiation of localized corrosion varied with test water and alloy composition. While CW724R and CW602N showed similar high susceptibility to localized corrosion in the alkaline (pH 8.2) tap water, CW511L was more prone to pitting corrosion in tap water of low pH (6.9). The effect of exposure duration was explored in the alkaline test water for the three brasses up to 72 days. Corrosion rates based on weight loss showed an expected initial high corrosion rate which declined with continuous immersion, leading to low and similar corrosion rates for all three brass alloys after 72 days. Thus, at given test conditions, the lead-free brasses showed good corrosion behavior being competitive to the performance of lead containing brass. Therefore, lead-free brass alloys are good candidates to substitute lead-containing brasses in tap water applications.
62

Synthesis of framework porous sorbents using sustainable precursors / Syntes av porösa ramverksmaterial från förnybara utgångsämnen

Hellman, Oskar January 2021 (has links)
Metal organic frameworks (MOFs) is a quite recently discovered porous material group which shows potential in many different areas. One of these areas is carbon capture; the framework structure of the porous materials allows gas molecules to adsorb to the surface of the pores. MOFs are conventionally synthesised at high temperatures and with hazardous solvents. The goal of this projectwas to synthesise highly porous MOFs at room temperature with water as the main solvent, using environmentally friendly and non-hazardous precursors. As well as the room temperature synthesis, conventional synthesis methods were used with the same precursors as comparison. The materials were characterised with X-ray diffraction, thermogravimetrical methods and IR-spectroscopy. To assess the porosity of the materials, gas adsorption evaluation was performed with CO2, N2, SF6, and CH4 at 20⁰C. In the end, three novel porous magnesium-based materials and one zirconium-based material were successfully synthesised. One of the magnesium-based materials showed a moderately high CO2 adsorption (2.38mmol/g), and could be synthesised at room temperature. The zirconium-based material showed a remarkably high selectivity (17.7) for SF6 over N2 and a high surface area (550m2/g)
63

Multivariate Data Analysis on (Ti,Al)N Arc-PVD coating process : MVDA of the growth parameters thickness, stress,composition, and cutting performance

Öqvist, Per-Olof January 2021 (has links)
This diploma work was done at Seco Tools AB (SECO) in Fagersta and aimed to evaluate the possibility to model the relationship between deposition data, deposition properties and, cutting performance of a (Ti,Al)N coating on cutting inserts by applying the Multivariate Data Analysis (MVDA) modeling technique Partial Least Squares Projection to Latent Structures Modeling (PLS). Cathodic Arc Deposition (Arc-PVD) was the PVD technique focused on this study. The deposition technique that was focused on in this study was Cathodic Arc Deposition (Arc-PVD). For this purpose, two series of Arc-PVD coatings were manufactured. The first series aimed to generate a supervised explorative model for the deposition process. The second manufactured series was aimed to generate a batch-to-batch variation model of a deposition process. In the first supervised explorative model, the deposition parameters were set by a Design of Experiment (DOE) setup using a quarter factorial design with resolution III. In the second batch-to-batch model, the non-fixed deposition parameters and the cathode wear were monitored, and all other parameters were kept the same for every run. The results demonstrate good possibilities to model Arc-PVD coating properties and its performance in metal cutting with respect to the applied deposition parameters. The supervised explorative model confirmed previously established relationships, while the batch-to-batch model shows that variations between batches could be related to the wear of the cathode. This wear was shown to have a negative influence on the properties of the deposited coating.
64

Novel Hybrid Nanomaterials : Combining Mesoporous Magnesium Carbonate with Metal-Organic Frameworks

Sanderyd, Viktor January 2018 (has links)
Nanotechnology as a field has the potential to answer some of the major challenges that mankind faces in regards to environmental sustainability, energy generation and health care. Though, solutions to these concerns can not necessarily rely on our current knowhow. Instead, it is reasonable to expect that humanity must adapt and learn to develop new materials and methods to overcome the adversities that we are facing. This master thesis has involved developing novel materials, serving as a small step in the continuous march towards a bright future where this is possible. More specifically, this work sought to combine mesoporous magnesium carbonate with various metal-organic frameworks to utilize the beneficial aspects from each of these constituents. The ambition was that these could be joined to render combined micro-/mesoporous core-shell structures, with high surface areas and many active sites whilst maintaining a good permeability. Numerous different synthesis routes were developed and explored in the pursuit of viable routes to design novel materials with potential future applications within for instance drug delivery, water harvesting from air and gas adsorption. Coreshell structures of the hydrophilic mesoporous magnesium carbonate covered with the hydrophobic zeolitic imidazole framework ZIF-8 was successfully synthesized for the first time, and practical studies demonstrated a dramatically enhanced water stability, which is perceived to have an impact on further research on these materials. ZIF-67 was also combined with mesoporous magnesium carbonate in a similar manner. Further, Mg-MOF-74 was grown directly from mesoporous magnesium carbonate, where the latter acted as a partially self-sacrificing template, with the aim of rendering a porous hierarchical structure with contributions from the micro- and mesoporous ranges. The outcomes of all these syntheses were characterized using several analyzing methods such as scanning electron microscopy, X-ray diffraction, energy dispersive spectroscopy and nitrogen sorption analysis.
65

Photocatalytic activity of titanium dioxide thin films deposited with high power impulse magnetron sputtering

Eriksson, Victor January 2021 (has links)
High power impulse magnetron sputtering has shown a lot of promise as a way of depositing photocatalytic thin films of titanium dioxide at low temperatures, however, the films deposited are often amorphous and display uncertain photocatalytic abilities. This thesis explores the deposition and characterization of photocatalytic thin films deposited with high power impulse magnetron sputtering.  Multiple films were deposited with reactive sputtering in both the oxide and metal mode of operations at different temperatures, duty cycles and substrate biases. The crystal structure, microstructure and photocatalytic activity of the samples were then characterized in order to correlate to each other as well as the growth conditions. Crystallinities were determined via a combined use of gracing incidence x-ray diffraction and Raman spectroscopy, microstructures were explored in cross-sectional images taken using scanning electron microscopy and the photocatalytic ability was measured by quantifying the rate constant during degradation of stearic acid while under UV-illumination.  It was found that the crystal structure of the sputtered films was influenced by the deposition mode used: oxide mode depositions yielded an anatase structure while metal mode depositions resulted in rutile or mixed structures. The only crystalline films were formed with substrate heating, the application of bias was found to correlate with the formation of more rutile and the most crystalline films were deposited with a higher duty cycle.  Photocatalytic films were successfully deposited at room temperature, even though they were amorphous. Interestingly, the anatase samples were not found to be the most reactive, instead it was found that the crystal structure only displayed a weak correlation to the reactivity of the films. The findings in this work suggest that the reactivity was also heavily influenced by the surface roughness of the samples as well as their microstructures.
66

Svavelcirkulation i cementprocessen längs ugnslinje 7

Singh, Simanjit, Rova, Lovisa, Andersson, Jennifer January 2020 (has links)
Cement is produced in three main steps: grinding of a mixture of raw materials, sintering of the raw meal to form clinker, and grinding and mixing of clinker, gypsum and additives to make cement. Slag from steel manufacturing can be used to replace some of the raw material, but since slag is a carrier of some unwanted compounds, problems arise. Excess sulphur circulating in the system during clinker production can cause various problems such as clogging. In this report, the circulation of sulphur and other volatile compounds as well as the composition of gaseous and solid materials in the cyclone tower has been studied using old data from 2014 and new measurements. No sulphuric gases were found in the cyclones, so it was concluded that most of the sulphur condenses at the bypass at the inlet to the cyclone closest to the kiln. Condensation is assumed to occur early in the pre-heating tower because of air leaking in. Sulphur balances from 2014 and 2020 showed that usage of slag increases the amount of sulphur that circulates in the system and that the critical amount has been exceeded as of the measurements taken 2020. It is recommended that further measurements are performed, such as qualitative analysis of the solid material to distinguish the different sulphuric compounds, as well as more experiments with varied parameters such as the amount of slag and kiln fuel used.
67

Casting and Characterization of Advanced High Strength Steels

Hedman, Daniel January 2020 (has links)
The Latin American steel making company Ternium S.A. aims to develop and produce a new type of advanced high strength steel (AHSS) in which the main alloying elements are carbon, aluminium, manganese, and silicon. The present work is the first phase of the development project and it involves casting and characterization of four steel compositions with varying amounts of the aforementioned elements. The results revealed that the Mn-content had a large impact on the development of hard phases during solidification. A steel with a Mn-content of 2 %wt. had almost completely transformed to pearlite during cooling, while a steel with a 4 %wt. Mn-content consisted of primarily martensite and retained austenite. Only the impact of the Mn-content is evaluated. The columnar grain size for two of the four steel compositions were in the range of 20-30 mm, which is similar to those observed from continuous casting. This indicate that the heat transfer rate was slow enough to allow these grains to grow. Measurements during casting showed an initial cooling rate of 10-20°C/min at a distance of 10 mm inside the ingot, which is much slower than the surface cooling rate during continuous casting (100-150°C/min). It was assumed that the cooling rate was similar for all castings since the methodology was identical. However, the steel used for cooling rate measurements was not characterized, why a correlation between cooling rate and composition could not be obtained. A heat transfer model was developed to gain further knowledge of the solidification process. As a reference to the heat transfer model, a eutectic Bi-42Sn alloy was cast with temperaturemonitoring using a casting setup identical to that of the steel castings. A similar cooling rate tothe Bi-42Sn reference casting was obtained where the cooling was faster from above of the ingot than below. Thus, the last part of the metal to solidify during the simulation was situated in the lower half of the ingot. This provides a model for testing future steel compositions.
68

Comparison of the lead-leakage in Pb-Sn hybrid perovskite solar cells and Pb-based perovskite solar cells

Cui, Chao January 2023 (has links)
Perovskite solar cells exhibit outstanding device performance and photovoltaic potential in recent ten years. However, the photoactive layer of the majority of perovskite solar cells with outstanding efficiency currently contains toxic lead. Although perovskite solar cells will be encapsulated prior to application to enhance the device's stability and prevent lead leakage, it is still possible for the devices to be broken or exposed to the environment during actual use. Correspondingly, Pb may enter water or soil through rainfall, posing health risks to humans and other creatures. To prepare perovskite solar cell devices with both high performance and low toxicity, current research concentrates primarily on Pb-Sn hybrid perovskite solar cells as Sn is less toxic than Pb from an environmental standpoint. To intuitively compare the lead leakage of Pb-based perovskite solar cells and Pb-Sn hybrid perovskite solar cells, this study simulated the lead leakage scenario under heavy rainfall conditions using self-prepared, good-performance solar cell devices. Our results indicate that Pb-Sn hybrid perovskite solar cells have less lead leakage than Pb-based perovskite solar cells. The lead leakage concentration of Pb-Sn hybrid perovskite solar cells was 36.8% (in the dripping test) and 41.2% (in the soaking test) lower than that of Pb-based perovskite solar cells.
69

Tuning the composition of metallic nanoparticles for catalytic applications

Ropp, Anthony January 2021 (has links)
Industries’ interest in nanomaterials is tremendous and catalysis is one of their applications. Catalysts allow reactions to occur under milder conditions, avoiding committing excessive heat or pressure to foster reactions. The discovery of Frustrated Lewis Pairs (FLP) in 2006 led to a new concept of homogeneous catalysis: metal-free acids and bases preventing from forming an Lewis adduct because their bulkiness create an active clamp that is able to cleave dihydrogen and other small molecules at room temperature. Transferring the FLP concept to the “nano”-world which is more relevant for industrial applications, requires well-designed nanoparticles and rationalization of their interaction with ligands aiming at forming a FLP between nanoparticles and ligands. The following project conducted at LCMCP (Laboratoire de Chimie de la Matière Condensée de Paris) under the supervision of Sophie Carenco aimed at studying the insertion of phosphorus in metallic nanoparticles in order to tune their catalytic activity and demonstrate Frustrated-Lewis Pair catalytic behaviours. To that end, copper nanoparticles and bimetallic core-shell nickel-cobalt nanoparticles were synthesized in colloidal solution. The phosphidation of both nanoparticles was investigated with trioctylphosphine (TOP) as the phosphorous source. Nanoparticles were characterized by X-Ray Diffraction, Transmission Electron Microscopy and X-ray Photoelectron Spectroscopy. Starting from the failure to reproduce a published procedure of copper phosphide nanoparticles synthesis, conditions of the reaction and the washing procedure were successively improved aiming the obtention of copper phosphide nanoparticles. The one-pot synthesis with hot-injection of TOP at the second step (320°C, 1h), allowed to isolate copper phosphide nanoparticles but a longer reaction time did not result in enhanced phosphorus doping. Further work would need to examine the reproducibility problems faced and investigate harsher reaction conditions (eg. higher temperature). Cu3P nanoparticles would be interesting to test as catalysts for hydrosilylation of benzaldehyde or CO2, a model reaction for CO2 hydrogenation. The synthesis of core-shell nickel-cobalt nanoparticles has been previously rationalized by Sophie Carenco’s team. Phosphidation was attempted from this optimized procedure. We started with harsh conditions (> 250°C, > 1h30) which caused reconstruction of the nanoparticles after leaching of the cobalt shell. In such conditions, the core-shell structure is not retained and a NiCoP alloy is obtained. Milder conditions allowed to retain the structure but further studies are required to characterize and locate the phosphorus insertion in the core-shell nanoparticles. NiCoP alloy and phosphidized core-shell Ni@Co will be of great interest to apply in catalysis for water splitting and hydrogenation of nitriles, respectively.
70

Synthesis of gold nanoparticles for rapid genotyping of M. tuberculosis using rolling circle amplification and nanoflare technology

García Mayo, Susana January 2017 (has links)
Tuberculosis (TB) is an airborne disease caused by Mycobacterium tuberculosis, with an incidence in a quarter of the world population. Despite the scientific and technological advances, an effective diagnostic method has not yet been found that allows an early diagnosis and, also, to detect the strain present in the patient. The combination of nanotechnology with molecular diagnostics has shown promising advances offering new possibilities, such as the development of nanoflares.  Nanoflares represent a new class of molecular probes, composed of gold nanoparticles functionalized with a recognition sequence that can be amplified by rolling circle amplification (RCA) technique, producing a fluorescence signal.  This thesis focuses in the synthesis of gold nanoparticles, with different coatings and sizes, as well as their subsequent application in the preparation and optimization of nanoflares for the genotyping of synthetic M. tuberculosis targets using RCA technique. The different preparations of nanoflares have an impact in the assay sensitivity, showing two times increase in sensitivity for citrate-coated nanoparticles with respect to those coated with PEG. Furthermore, it was observed that the sensitivity is directly related to the synthesized particle size.  Sensitivity is also affected by the application of a purification post-treatment of the synthesis product. This post-treatment reduces the sensitivity of nanoflares by up to 37% but, by contrast, extends its useful life.  The results obtained are shown as a proof of concept for a future cost-effective, rapid and robust in situ diagnostic method that identifies the strain of tuberculosis present in the patient.

Page generated in 0.0829 seconds