• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19887
  • 3293
  • 3267
  • 2702
  • 1114
  • 962
  • 889
  • 889
  • 889
  • 889
  • 889
  • 885
  • 558
  • 400
  • 397
  • Tagged with
  • 43458
  • 5472
  • 4888
  • 4581
  • 4034
  • 3784
  • 3723
  • 3126
  • 2880
  • 2687
  • 2379
  • 2349
  • 2237
  • 2230
  • 2157
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Asymptotic analysis of extreme electrochemical transport

Chu, Kevin Taylor January 2005 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005. / Includes bibliographical references (p. 237-244). / In the study of electrochemical transport processes, experimental exploration currently outpaces theoretical understanding of new phenomena. Classical electrochemical transport theory is not equipped to explain the behavior of electrochemical systems in the extreme operating conditions required by modern devices. In this thesis, we extend the classical theory to examine the response of two electrochemical systems that form the basis for novel electrochemical devices. We first examine the DC response of an electrochemical thin film, such as the separator in a micro-battery, driven by current applied through reactive electrodes. The model system consists of a binary electrolyte between parallel-plate electrodes, each possessing a compact Stern layer which mediates Faradaic reactions with Butler-Volmer kinetics. Our analysis differs from previous studies in two significant ways. First, we impose the full nonlinear, reactive boundary conditions appropriate for electrolytic/galvanic cells. / (cont.) Since surface effects become important for physically small systems, the use of reactive boundary conditions is critical in order to gain insight into the behavior of actual electrochemical thin films that are sandwiched between reactive electrodes, especially at high current densities. For instance, our analysis shows that reaction rate constants and the Stern-layer capacitance have a strong influence on the response of the thin film. Second, we analyze the system at high current densities (far beyond the classical diffusion-limited current) which may be important for high power-density applications. At high currents, we obtain previously unknown characterizations of two interesting features at the cathode end of the cell: (i) a nested boundary layer structure and (ii) an extended space charge region. Next, we study the response of a metal (i.e., polarizable) colloid sphere in an electrolyte solution over a range of applied electric fields. / (cont.) This problem, which underlies novel electrokinetically driven microfluidic devices, has traditionally been analyzed using circuit models which neglect bulk concentration variations that arise due to double layer charging. Our analysis, in contrast, is based on the Nernst-Planck equations which explicitly allow for bulk concentration gradients. A key feature of our analysis is the use of surface conservation laws to provide effective boundary conditions that couple the double layer charging dynamics, surface transport processes, and bulk transport processes. The formulation and derivation of these surface conservation laws via boundary layer analysis is one of the main contributions of this thesis. For steady applied fields, our analysis shows that bulk concentrations gradients become significant at high applied fields and affect both bulk and double layer transport processes. We also find that surface transport becomes important for strong applied fields as a result of enhanced absorption of ions by the double layer. / (cont.) Unlike existing theoretical studies which focus on weak applied fields (so that both of these effects remain weak), we explore the response of the system to strong applied fields where both bulk concentration gradients and surface transport contribute at leading order. For the unsteady problem at applied fields that are not too strong, we find that diffusion processes, which are necessary for the system to relax to steady-state, are suppressed at leading-order but appear as higher-order corrections. This result is derived in a novel way using time-dependent matched asymptotic analysis. Unfortunately, the dynamic response of the system to large applied fields seems to introduce several complications that make the analysis (both mathematical and numerical) quite challenging; the resolution of these challenges is left for future work. Both of these problems require the use of novel techniques of asymptotic analysis (e.g., multiple parameter asymptotic expansions, surface conservation laws, and time-dependent asymptotic matching) and advanced numerical methods (e.g., pseudospectral methods, Newton-Kantorovich method, and direct matrix calculation of Jacobians) which may be applicable elsewhere. / by Kevin Taylor Chu. / Ph.D.
202

On the equivalence of two continuous homology theories

Giever, John Bertram, 1919- January 1948 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1948. / Vita. / Includes bibliographical references (leaf 44). / by John Bertram Giever. / Ph.D.
203

Scaling limits of random plane partitions and six-vertex models

Dimitrov, Evgeni (Evgeni Simeonov) January 2018 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2018. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 235-239). / We present a collection of results about the scaling limits of several models from integrable probability. Our first result concerns the asymptotic behavior of the bottom slice of a Hall-Littlewood random plane partition. We show the latter concentrates around a limit shape and in two different scaling regimes identify the fluctuations around this shape with the GUE Tracy- Widom distribution and the narrow wedge initial data solution to the Kardar-Parisi-Zhang (KPZ) equation. The second result concerns the limiting behavior of a class of six-vertex models in the quadrant, and we obtain the GUE-corners process as a scaling limit for this class near the boundary. Our final result, joint with Ivan Corwin, demonstrates the (long predicted) transversal 2/3 critical exponent for the height functions of the stochastic sixvertex model and asymmetric simple exclusion process (ASEP). The algebraic parts of our arguments involve the construction and use of degenerations and modifications of the Macdonald difference operators to obtain rich families of observables for the models we consider. These formulas are in terms of multiple contour integrals and provide a direct access to quantities of interest. The analytic parts of our arguments include the detailed asymptotic analysis of Fredholm determinants and contour integrals through steepest descent methods. An important aspect of our approach, is the combination of exact formulas with more probabilistic arguments, based on various Gibbs properties enjoyed by the models we study. / by Evgeni Dimitrov. / Ph. D.
204

Bouncing and walking droplets : towards a hydrodynamic pilot-wave theory

Molác̆ek, Jan, Ph. D. Massachusetts Institute of Technology January 2013 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Mathematics, 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 197-205). / Coalescence of a liquid drop with a liquid bath can be prevented by vibration of the bath. In a certain parameter regime, a purely vertical bouncing motion may ensue. In another, this bouncing state is destabilized by the droplet's wavefield, leading to drop motion with a horizontal component called walking. The walking drops are of particular scientific interest because Couder and coworkers have demonstrated that they exhibit many phenomena reminiscent of microscopic quantum particles. Nevertheless, prior to this work, no quantitative theoretical model had been developed to rationalize and inform the experiments before our work. In this thesis, we develop a hierarchy of theoretical models of increasing complexity in order to describe the drop's vertical and horizontal motion in the relevant parameter range. Modeling the drop-bath interaction via a linear spring is found lacking; therefore, a logarithmic spring model is developed. We first introduce this model in the context of a drop impacting a rigid substrate, and demonstrate its accuracy by comparison with existing numerical and experimental data. We then extend the model to the case of impact on a liquid substrate, and apply it to rationalize the dependence of the bouncing droplet's behaviour on the system parameters. The theoretical developments have motivated further experiments, which have in turn lead to refinements of the theory. We proceed by modeling the evolution of the standing waves created by impact on the bath, which enables us to predict the onset of walking and the dependence of the walking speed on the system parameters. New complex walking states are predicted, and subsequently validated by our detailed experimental study. A trajectory equation for the horizontal motion is obtained by averaging over the vertical bouncing. / by Jan Molác̆ek. / Ph.D.
205

A computer-aided combinatorial analysis of the game of cribbage

Hoff, Edwin Kevin January 1992 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1992. / Includes bibliographical references (p. 160). / by Edwin Kevin Hoff. / Ph.D.
206

New bounds on optimal binary search trees / New bounds on optimal BSTs trees

Harmon, Dion (Dion Kane) January 2006 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2006. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Includes bibliographical references (p. 153-156). / Binary search trees (BSTs) are a class of simple data structures used to store and access keys from an ordered set. They have been around for about half a century. Despite their ubiquitous use in practical programs, surprisingly little is known about their optimal performance. No polynomial time algorithm is known to compute the best BST for a given sequence of key accesses, and before our work, no o(log n)-competitive online BST data structures were known to exist. In this thesis, we describe tango trees, a novel O(log log n)-competitive BST algorithm. We also describe a new geometric problem equivalent to computing optimal offline BSTs that gives a number of interesting results. A greedy algorithm for the geometric problem is shown to be equivalent to an offline BST algorithm posed by Munro in 2000. We give evidence that suggests Munro's algorithm is dynamically optimal, and strongly suggests it can be made online. The geometric model also lets us prove that a linear access algorithm described by Munro in 2000 is optimal within a constant factor. Finally, we use the geometric model to describe a new class of lower bounds that includes both of the major earlier lower bounds for the performance of offline BSTs, and construct an optimal bound in this new class. / by Dion Harmon. / Ph.D.
207

Random tilings : gap probabilities, local and global asymptotics / Gap probabilities, local and global asymptotics

Knizel, Alisa January 2017 (has links)
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mathematics, 2017. / Cataloged from PDF version of thesis. / Includes bibliographical references (pages 119-125). / In the thesis we explore and develop two different approaches to the study of random tiling models. First, we consider tilings of a hexagon by rombi, viewed as 3D random stepped surfaces with a measure proportional to q-volume. Such model is closely related to q-Hahn orthogonal polynomial ensembles, and we use this connection to obtain results about the local behavior of this model. In terms of the q-Hahn orthogonal polynomial ensemble, our goal is to show that the one-interval gap probability function can be expressed through a solution of the asymmetric q-Painleve V equation. The case of the q-Hahn ensemble we consider is the most general case of the orthogonal polynomial ensembles that have been studied in this context. Our approach is based on the analysis of q-connections on P1 with a particular singularity structure. It requires a new derivation of a q-difference equation of Sakai's hierarchy [75] of type A(1)/2. We also calculate its Lax pair. Following [7], we introduce the notion of the [tau]-function of a q-connection and its isomonodromy transformations. We show that the gap probability function of the q-Hahn ensemble can be viewed as the [tau]-function for an associated q-connection and its isomonodromy transformations. Second, in collaboration with Alexey Bufetov we consider asymptotics of a domino tiling model on a class of domains which we call rectangular Aztec diamonds. We prove the Law of Large Numbers for the corresponding height functions and provide explicit formulas for the limit. For a special class of examples, an explicit parametrization of the frozen boundary is given. It turns out to be an algebraic curve with very special properties. Moreover, we establish the convergence of the fluctuations of the height functions to the Gaussian Free Field in appropriate coordinates. Our main tool is a recently developed moment method for discrete particle systems. / by Alisa Knizel. / Ph. D.
208

Modules over regular algebras and quantum planes

Ajitabh, Kaushal January 1994 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1994. / Includes bibliographical references (leaves 95-96). / by Kaushal Ajitabh. / Ph.D.
209

Schubert calculus in generalized cohomology

Bressler, Paul January 1989 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1989. / Includes bibliographical references (leaves 28-29). / by Paul Bressler. / Ph.D.
210

Path integrals on ultrametric spaces

Blair, Alan David, 1967- January 1994 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1994. / Includes bibliographical references (p. 51-52). / by Alan Blair. / Ph.D.

Page generated in 0.1115 seconds