Spelling suggestions: "subject:"matlab core""
1 |
Analysis of deep excavations using the mobilized strength design(MSD) methodBjureland, William January 2013 (has links)
The population in Sweden and around the world is increasing. When population increases, cities become more densely populated and a demand for investments in housing and infrastructure is created. The investments needed are usually large in size and the projects resulting from the investments are often of a complex nature. A major factor responsible for creating the complexity of the projects is the lack of space due to the dense population. The lack of space creates a situation where a very common feature of these types of projects is the use of earth retaining systems. The design of retaining systems in Europe is performed today based on Eurocode. Eurocode is a newly introduced standard for the design of structures and is developed in order to make it easier to work cross borders by using the same principle of design in all countries. For the design of retaining walls in Sweden, Eurocode uses the old standard as the basis of the design procedure consisting of two separate calculations, ultimate limit state and serviceability limit state. Since soil does not consist of two separate mechanisms consisting of failure and serviceability, this approach to solving engineering problems fails to address the real behavior of soils. To handle this problem Bolton et. al. (1990a, 1990b, 2004, 2006, 2008, 2010) developed the theory of “mobilized strength design” where a single calculation procedure incorporates both the calculation of deformations and the safety against failure. The calculation uses conservation of energy and the degree of mobilized shear strength to study deformations in and around the retaining system and the safety against failure in mobilizing the maximum shear strength of the soil. The aim of this thesis was to introduce the theory of mobilized strength design to geotechnical engineers in Sweden working both in academia and in industry. Another aim of the thesis was to develop a tool that could be used to perform calculations of earth retaining systems based on this theory. The development of a working tool has resulted in a Matlab code which can in a simple way be used to calculate both deformations in the retaining system and the safety against failure by using the degree of mobilized shear strength presented in the theory. The Matlab code can handle ground layering with different shear strengths and weights of the soil. A comparison instrument in a Mathcad calculation sheet have been developed to produce results based on the original theory where the feature of soil layering is not incorporated into the calculation procedure. The thesis shows that the Matlab code developed performs well but is not yet sensitive enough to produce the same results as the Mathcad calculation sheet and needs to be further developed to make it more robust in order to handle all different excavation scenarios. v The theory of mobilized strength design has been introduced to geotechnical engineers in Sweden and the thesis studies the theory and shows the calculation procedure and how the different input values and calculations affect the analysis. The thesis also shows some areas in which the theory and the code can be modified and where further research can be performed in order to make them fully applicable to Swedish conditions. As an example the use of rock dowels drilled into the bedrock and attached to the retaining structure is a common feature for deep excavations in Sweden. Further research can be pursued on how to incorporate the energy stored in the rock dowels into the calculation procedure.
|
2 |
Modelling of a solar pond as a combined heat source and store to drive an absorption cooling system for a building in IraqKanan, Safwan January 2017 (has links)
This research studies the performance of a salinity gradient solar pond driving an absorption cooling system, as an alternative to a conventional electrically powered cooling system, to provide cool air for a modern single family house in the hot dry climate of Baghdad, Iraq. The system comprises a salinity gradient solar pond, a hot-water-fired absorption water chiller, a chilled-water cooling coil which cools the air in the house, and a cooling tower which rejects heat to the ambient air. Hot brine from the pond circulates through a heat exchanger, where it heats water that is then pumped to the chiller. This arrangement protects the chiller from the corrosive brine. The system is controlled on-off by a room thermostat in the house. The system performance is modelled by dynamic thermal simulation using TMY2 hourly typical weather data. TRNSYS software is used for the main simulation, coupled to a MATLAB model of heat and mass transfer in the pond and the ground beneath it. The model of the pond and the ground is one-dimensional (only vertical transfers are considered). Radiation, convection, conduction, evaporation and diffusion are considered; the ground water at some depth below the pond is treated as being at a fixed temperature. All input data and parameter values in the simulation are based on published, standard or manufacturer's data. Temperature profiles in the pond were calculated and found to be in good agreement with published experimental results. It was found that a pond area of approximately 400 m2 was required to provide satisfactory cooling for a non-insulated house of approximately 125 m2 floor area. It was found that varying the pond area, ground conditions and pond layer thicknesses affected the system performance. The optimum site is one that has soil with low thermal conductivity, low moisture content and a deep water table. It is concluded that Iraq's climate has a potential for solar-pond-powered thermal cooling systems. It is feasible to use a solar-pond-powered cooling system to meet the space cooling load for a single family house in the summer season. Improving the thermal performance of the house by insulation could reduce the required solar pond area.
|
3 |
Paléosismologie morphologique à partir de données LiDAR : développement et application d’un code de mesure des déplacements sur les failles, 3D_Fault_Offsets / Recovering paleoearthquake slips in Earth surface morphology measured using LiDAR data : development and application of a new code, 3D_Fault_OffsetsStewart, Nicholas 19 November 2018 (has links)
L’objectif principal de cette thèse est de tirer de données LiDAR de télédétection à très haute résolution afin d’extraire une partie du traces tectono-géomorphiques imprimées dans la morphologie de grands tremblements de terre préhistoriques. Les informations consultées dans ces traces constituent l'historique des glissements cumulés de grands tremblements paléoséismique successifs le long d'une faille donnée. L'historique des glissements permet de déterminer le nombre d'événements et les glissements les plus importants produits par ces événements. La connaissance des plus grandes glissades produites par des grands séismes historiques et préhistoriques permettra de déduire l'ampleur potentielle des événements futurs. La caractérisation de la distribution du glissement superficiel fournit des informations importantes sur la mécanique des failles, les contrôles de la propagation de la rupture et la répétabilité de la rupture à certains points le long de la faille. Cependant, la caractérisation et la mesure correctes de la distribution des glissements à partir de formes de relief géomorphologiques déplacées par tectonisme sont accompagnées d'incertitudes considérables, résultant principalement de processus d'érosion et de dépôt. Ces incertitudes pourraient entraîner à la fois une sous-estimation et une surestimation du glissement, ainsi que des résultats contradictoires issus d'enquêtes différentes sur le même défaut. Par conséquent, nous avons développé une nouvelle technique basée sur MATLAB, 3D_Fault_Offsets, pour caractériser mathématiquement, et donc automatiquement, la géométrie 3D de marqueurs géomorphiques décalés (définie par 9 entités géométriques situées de part et d'autre de la faille), puis calculer composants latéraux et verticaux du glissement. Nous estimons que les incertitudes générées par cette technique définissent mieux la gamme des "véritables" compensations potentielles par rapport aux incertitudes plus libérales proposées dans d’autres études, pourtant ils se révèlent assez volumineux. Après vérification de l'efficacité du code en mesurant à nouveau 3 ensembles de données paléosismiques, nous avons l’appliqué à une faille de décrochement qui était historiquement capable d'un séisme de chute de contrainte importante (MW ~ 8,2 en 1855), la faille de Wairarapa. Nous avons identifié et analysé un total d'environ 700 marqueurs géomorphiques déplacés le long d'une zone de données LiDAR de 70 km, ce qui en fait l'un des ensembles de données paléosismiques les plus vastes et les plus denses. Les décalages latéraux mesurés vont de quelques mètres à environ 800 m, mais la majorité d'entre eux sont inférieurs à 80 m, ce qui permet d'examiner les plus récents glissements de faille latéraux. Les décalages verticaux varient entre 0 et ~ 30 m et suggèrent des rapports de glissement vertical / latéral généralement compris entre 10 et 20%. Nous avons effectué les analyses statistiques de la collection dense de décalages mesurés séparément le long des principaux segments successifs qui constituent l'étendue de la faille étudiée. Dans la plupart des segments, cette analyse a révélé la présence de 6 à 7 amas décalés dans la plage allant de 0 à 80 m, suggérant la rupture de la faille de Wairarapa lors de 6 à 7 grands séismes précédents. Les plus grandes glissades que nous déduisons pour ces tremblements de terre passés sont importantes, la plupart dans la plage 7-15 m. Chaque glissement sismique semble varier le long de la faille et généralement plus grand dans sa partie sud. La faille de Wairarapa a ainsi provoqué à plusieurs reprises d'importants séismes dus à la chute de contraintes au cours de la période préhistorique, ce qui souligne le risque sismique élevé qu'elle pose dans le sud de la Nouvelle-Zélande. Par conséquent, l'utilisation de notre nouveau code 3D_Fault_Offsets avec des données topographiques à haute résolution telles que LIDAR peut permettre de mieux évaluer le comportement futur des failles sismogènes. / The main scope of this PhD thesis is to utilize very high-resolution remote sensing LiDAR data to extract some of the tectono-geomorphic traces imprinted in the morphology from large prehistoric earthquakes. The information that is accessed in these traces is the cumulative slip history of successive large paleoearthquakes along a given fault. The slip history allows the determination of the number of events and the largest slips produced by those respective events. The knowledge of the largest slips produced by historic and prehistoric large earthquakes will enable some inference into the potential magnitude of future events. Characterizing the distribution of surface slip provides important insights into fault mechanics, controls on rupture propagation, and repeatability of rupture at certain points along the fault. However, properly characterizing and measuring the slip distribution from tectonically-displaced geomorphic landforms comes with considerable uncertainties mostly resulting from erosion and depositional processes. These uncertainties could lead to both underestimation and overestimation of the slip, and to conflicting results from different surveys of the same fault. Therefore, we have developed a new MATLAB-based technique, 3D_Fault_Offsets, to mathematically, and hence automatically, characterize the 3D geometry of offset geomorphic markers (defined by 9 geometric features either side of the fault), and then calculate the lateral and vertical components of slip. We believe that the uncertainties obtained from this technique better define the range of potential ‘true’ offsets compared to more liberal uncertainties offered in other studies, yet they reveal to be fairly large. Upon verification of the code efficacy by successfully re-measuring 3 paleoseismic datasets, we applied it to a strike-slip fault in New Zealand that was historically capable of a large stress drop earthquake (MW~8.2 in 1855), the Wairarapa fault. We identified and analyzed a total of ~700 displaced geomorphic markers along a 70-km stretch of LiDAR data, making this one of the largest and densest paleoseismic datasets. Measured lateral offsets range from a few meters to about 800 m, but the majority are lower than 80 m, providing the means to examine the most recent lateral fault slips. The vertical offsets range between 0 and ~30 m, and suggest vertical to lateral slip ratios commonly in the range 10-20%. We conducted the statistical analyses of the dense collection of measured offsets separately along the successive major segments that form the investigated fault stretch. In most segments, this analysis revealed 6-7 offset clusters in the range 0-80 m, suggesting the Wairarapa fault ruptured in 6-7 previous large earthquakes. The largest slips we infer for these past earthquakes are large, most in the range 7-15 m. Each earthquake slip seems to vary along the fault length, and be generally greater in its southern part. The Wairarapa fault has thus repeatedly produced large stress drop earthquakes in prehistoric time, which emphasizes the elevated seismic hazard it poses in Southern New Zealand. Therefore, the use of our new code 3D_Fault_Offsets with high resolution topographic data such as LIDAR can lead to better assessments of future behavior of seismogenic faults.
|
Page generated in 0.0744 seconds