• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anthrax, Matrix Biology, and Angiogenesis: Capillary Morphogenesis Gene 2 Mediates Activity and Uptake of Type IV Collagen-Derived Anti-Angiogenic Peptides

Finnell, Jordan Grant 01 June 2017 (has links)
Capillary Morphogenesis Gene 2 (CMG2) is a type I transmembrane, integrin-like receptor. It was originally identified as one of several genes upregulated during capillary formation. It was subsequently identified as one of two physiological anthrax toxin receptors, where CMG2 serves as a cell-surface receptor for anthrax toxin and mediates entry of the toxin into cells via clathrin-dependent endocytosis. Additionally, loss-of-function mutations in CMG2 cause the genetic disorder hyaline fibromatosis syndrome (HFS), where the core symptom is dysregulation of extracellular matrix homeostasis (ECM), including excessive accumulation of proteinaceous hyaline material; HFS clearly indicates that CMG2 plays an essential function in ECM homeostasis and repair. Most often, these situational roles have been evaluated as separate intellectual and experimental entities; consequently, whereas details have emerged for each respective situational role, there has been little attempt to synthesize knowledge from each situational role in order to model a holistic map of CMG2 function and mechanism of action in normal physiology.The work presented in this thesis is an example of such a synthesis. Interactions between CMG2 and type IV collagen (Col IV) were evaluated, to better understand this putative interaction and its effect on CMG2 function in angiogenesis. Using an overlapping library peptide array of the Col IV α1 and α2 chains, it was found that CMG2-binding peptides were enriched within the NC1 domains. This finding was corroborated via another epitope mapping peptide array, where we found a major epitope for CMG2-binding within the α2 NC1 domain (canstatin). Identification of CMG2 interactions with Col IV NC1 domains (including canstatin) was both surprising and intriguing, as these domains are potent endogenous inhibitors of angiogenesis. To further evaluate the physiological relevance of interactions with Col IV NC1 domains, a canstatin-derived peptide from the original array was synthesized and used for further studies. This peptide (here known as S16) binds with high affinity (KD = 440 ± 160 nM) to the extracellular, ligand-binding CMG2 vWA domain; specificity was confirmed through competition studies with anthrax toxin PA, and through demonstration of divalent cation-dependent binding. CMG2 was found to be the relevant endothelial receptor for S16. CMG2 in fact mediates endocytic uptake of peptide S16, as demonstrated by flow cytometry, and colocalization studies. S16 further inhibits migration of endothelial cells. These findings demonstrate that CMG2 is a functional receptor for Col IV NC1 domain fragments. CMG2 may exert a pro-angiogenic effect through endocytosis and clearance of anti-angiogenic NC1 domain fragments. Additionally, this is the first demonstration of CMG2-mediated uptake of an endogenous matrix fragment, and suggests a mechanism by which CMG2 regulates ECM and basement membrane homeostasis, thereby establishing a functional connection between the receptor's role in matrix biology and angiogenesis.
2

Investigating cell lineage specific biosynthesis of tenascin-C during inflammation

Giblin, Sean January 2018 (has links)
The extracellular matrix (ECM) is a complex network of molecules secreted by cells, which is essential for providing structural support and facilitating cell processes including adhesion, migration and survival. Tenascin-C is an immunomodulatory ECM protein that exhibits limited expression in healthy tissues, but is transiently elevated at sites of tissue injury, and is persistently expressed in chronic inflammatory diseases and tumours. Alternative splicing of 9 of tenascin-C's fibronectin type III-like domains (FnIII- A1, A2, A3, A4, B, AD2, AD1, C and D) generates enormous diversity in form; yielding 511 possible isoforms. Post-transcriptional modification of tenascin-C has been studied in cancer and during development where disease and tissue specific isoforms exhibit distinct adhesive, migratory and proliferative effects. However, little is known of how tenascin-C is expressed or alternatively spliced during inflammation. This study characterises inflammation and disease specific tenascin-C isoforms made by immune cells and fibroblasts, and investigates their functional relevance. Biosynthesis and alternative splicing of tenascin-C was examined using standard curve qPCR, ELISA, Western blot and confocal immunocytochemistry in resting and activated primary human immune cells, dermal fibroblasts, and in synovial fibroblasts isolated from healthy controls and from osteoarthritis (OA) and rheumatoid arthritis (RA) patients. Based on these data, three recombinant proteins comprising FnIII domains AD2-AD1, B-C-D and B-AD2-AD1-C-D were cloned, expressed and purified, and their impact on cell behaviour including adhesion, morphology and migration was assessed. Basal tenascin-C expression was lower in myeloid and lymphoid cells than fibroblasts, and was induced in all following inflammatory stimulation. Tenascin-C expression was elevated in disease with RA and OA synovial fibroblasts containing higher levels than healthy controls. Alternative splicing following cell activation was cell-type specific: all FnIII except AD2 and AD1 were upregulated in dendritic cells and macrophages, in T-cells all FnIII remained unchanged with FnIII A1 absent; and no change in splicing was observed in activated dermal fibroblasts. Normal and OA synovial fibroblasts exhibited similar tenascin-C splicing patterns, but FnIII B and D were specifically elevated in RA. Functional analysis revealed differences in the adhesion, morphology and migration of myeloid cells and dermal fibroblasts cultured on FnIII AD2-AD1, B-C-D, B-AD2-AD1-C-D and full length tenascin-C substrates; FnIII B-C-D promoted MDDC migration while B-AD2-AD1-C-D promoted fibroblast adhesion, compared to full length tenascin-C. For the first time, this study reveals differences in tenascin-C biosynthesis and alternative splicing by immune cells and fibroblasts following activation with inflammatory stimuli; and starts to reveal how alternative splicing of tenascin-C may influence the behaviours of both stromal and immune cells types during inflammation and in inflammatory diseases.

Page generated in 0.0454 seconds