Spelling suggestions: "subject:"maximalist""
1 |
Optimal stopping problems for the maximum processOtt, Curdin January 2013 (has links)
A cornerstone in the theory of optimal stopping for the maximum process is a result known as Peskir’s maximality principle. It has proved to be a powerful tool to solve optimal stopping problems involving the maximum process under the assumption that the driving process X is a time-homogeneous diffusion. In this thesis we adapt Peskir’s maximality principle to allow for X a spectrally negative L´evy processes, thereby providing a general method to approach optimal stopping problems for the maximum process driven by spectrally negative L´evy processes. We showcase this by explicitly solving three optimal stopping problems and the capped versions thereof. Here capped version means a modification of the original optimal stopping problem in the sense that the payoff is bounded from above by some constant. Moreover, we discuss applications of the aforementioned optimal stopping problems in option pricing in financial markets whose price process is driven by an exponential spectrally negative L´evy process. Finally, to further highlight the applicability of our general method, we present the solution to the problem of predicting the time at which a positive self-similar Markov process with one-sided jumps attains its maximum or minimum.
|
2 |
Graphical representation of independence structuresSadeghi, Kayvan January 2012 (has links)
In this thesis we describe subclasses of a class of graphs with three types of edges, called loopless mixed graphs (LMGs). The class of LMGs contains almost all known classes of graphs used in the literature of graphical Markov models. We focus in particular on the subclass of ribbonless graphs (RGs), which as special cases include undirected graphs, bidirected graphs, and directed acyclic graphs, as well as ancestral graphs and summary graphs. We define a unifying interpretation of independence structure for LMGs and pairwise and global Markov properties for RGs, discuss their maximality, and, in particular, prove the equivalence of pairwise and global Markov properties for graphoids defined over the nodes of RGs. Three subclasses of LMGs (MC, summary, and ancestral graphs) capture the modified independence model after marginalisation over unobserved variables and conditioning on selection variables of variables satisfying independence restrictions represented by a directed acyclic graph (DAG). We derive algorithms to generate these graphs from a given DAG or from a graph of a specific subclass, and we study the relationships between these classes of graphs. Finally, a manual and codes are provided that explain methods and functions in R for implementing and generating various graphs studied in this thesis.
|
Page generated in 0.061 seconds