1 |
Evaluation of Traction Control Systems for an Electric Forklift TruckKarlsson, Mattias, Johansson, Sebastian January 2021 (has links)
This thesis evaluates different controllers for traction control on an electric forklift truck and has been done in cooperation with Toyota Material Handling Manufacturing Sweden. The need for a traction control system has increased with the introduction of lithium-ion batteries replacing the older lead-acid batteries, reducing the battery weight and therefore the downward force on the driving wheel increasing the risk for slip. The forklift truck was modelled using Simulink and validated by experiment. Different possible control strategies were investigated and three were chosen for implementation in simulation. These were controllers based on Model Following Control, Maximum Transmissible Torque Estimation and Sliding Mode Control. Model Following Control makes use of a nominal model to compare actual wheel speed values with nominal wheel speed values to determine if slip is occurring, Maximum Transmissible Torque Estimation makes use of a closed-loop disturbance observer to compute the maximum transmissible torque possible without inducing slip and using it as a limitation on the input signal, and Sliding Mode Control uses different functions to \say{slide} along a sliding surface to stay around a specific slip value. All three controller types were developed both as speed controlled and torque controlled. All of the controllers could reduce slip heavily in simulation. The Maximum Transmissible Torque Estimation controller reduced slip the most and kept oscillations at a minimum, but was not as responsive as the others to driver commands. The conclusion was that the controller of choice would depend on the working environment of the forklift truck. In a low friction environment where slip is expected to occur often, the Maximum Transmissible Torque Estimation controller is advisable, while the other two would be a better choice for environment with low slip occurrence. The use of torque control, while often better with regards to decreasing slip, could not be advised due to a perceived increase in implementation cost.
|
Page generated in 0.0931 seconds