• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Least-squares methods for computational electromagnetics

Kolev, Tzanio Valentinov 15 November 2004 (has links)
The modeling of electromagnetic phenomena described by the Maxwell's equations is of critical importance in many practical applications. The numerical simulation of these equations is challenging and much more involved than initially believed. Consequently, many discretization techniques, most of them quite complicated, have been proposed. In this dissertation, we present and analyze a new methodology for approximation of the time-harmonic Maxwell's equations. It is an extension of the negative-norm least-squares finite element approach which has been applied successfully to a variety of other problems. The main advantages of our method are that it uses simple, piecewise polynomial, finite element spaces, while giving quasi-optimal approximation, even for solutions with low regularity (such as the ones found in practical applications). The numerical solution can be efficiently computed using standard and well-known tools, such as iterative methods and eigensolvers for symmetric and positive definite systems (e.g. PCG and LOBPCG) and reconditioners for second-order problems (e.g. Multigrid). Additionally, approximation of varying polynomial degrees is allowed and spurious eigenmodes are provably avoided. We consider the following problems related to the Maxwell's equations in the frequency domain: the magnetostatic problem, the electrostatic problem, the eigenvalue problem and the full time-harmonic system. For each of these problems, we present a natural (very) weak variational formulation assuming minimal regularity of the solution. In each case, we prove error estimates for the approximation with two different discrete least-squares methods. We also show how to deal with problems posed on domains that are multiply connected or have multiple boundary components. Besides the theoretical analysis of the methods, the dissertation provides various numerical results in two and three dimensions that illustrate and support the theory.

Page generated in 0.343 seconds