• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implementation And Simulation Of Mc68hc11 Microcontroller Unit Using Systemc For Co-design Studies

Tuncali, Cumhur Erkan 01 December 2007 (has links) (PDF)
In this thesis, co-design and co-verification of a microcontroller hardware and software using SystemC is studied. For this purpose, an MC68HC11 microcontroller unit, a test bench that contains input and output modules for the verification of microcontroller unit are implemented using SystemC programming language and a visual simulation program is developed using C# programming language in Microsoft .NET platform. SystemC is a C++ class library that is used for co-designing hardware and software of a system. One of the advantages of using SystemC in system design is the ability to design each module of the system in different abstraction levels. In this thesis, test bench modules are designed in a high abstraction level and microcontroller hardware modules are designed in a lower abstraction level. At the end, a simulation platform that is used for co-simulation and co-verification of hardware and software modules of overall system is developed by combining microcontroller implementation, test bench modules, test software and visual simulation program. Simulations at different levels are performed on the system in the developed simulation platform. Simulation results helped observing errors in designed modules easily and making corrections until all results verified designed hardware modules. This stuation showed that co-designing and co-verifying hardware and software of a system helps finding errors and making corrections in early stages of system design cycle and so reducing design time of the system.

Page generated in 0.016 seconds