Spelling suggestions: "subject:"mcclellan index"" "subject:"mcclendon index""
1 |
Aplicação de métodos não supervisionados: estudo empírico com os dados de segurança pública do estado do Rio de JaneiroNascimento, Otto Tavares 20 December 2016 (has links)
Submitted by Otto Tavares Nascimento (otavares93@gmail.com) on 2017-05-12T09:14:03Z
No. of bitstreams: 1
Dissertação_Otto_Tavares_Nascimento.pdf: 9875781 bytes, checksum: fe5bb21c41c1cb3b1dc79d84841fe938 (MD5) / Approved for entry into archive by Leiliane Silva (leiliane.silva@fgv.br) on 2017-05-12T20:37:41Z (GMT) No. of bitstreams: 1
Dissertação_Otto_Tavares_Nascimento.pdf: 9875781 bytes, checksum: fe5bb21c41c1cb3b1dc79d84841fe938 (MD5) / Made available in DSpace on 2017-05-30T14:11:36Z (GMT). No. of bitstreams: 1
Dissertação_Otto_Tavares_Nascimento.pdf: 9875781 bytes, checksum: fe5bb21c41c1cb3b1dc79d84841fe938 (MD5)
Previous issue date: 2016-12-20 / Este trabalho é uma abordagem multidisciplinar, o qual aplica-se a metodologia de matemática aplicada, em específico, aprendizagem não supervisionada, a dados de segurança pública. Busca-se identificar a semelhança entre batalhões da polícia, utilizando métodos de clusterização de modo a otimizar numericamente o critério de avaliação de McClain. Além da otimização, aborda-se intuitivamente o modelo de clusterização hierárquica, para posteriormente extrair ordem no padrão criminal dos clusters e, finalmente, aplicar o modelo de classificação OLogit, utilizando variáveis características desses clusters. Encontramos evidência de clusterização dos dados e significância na utilização de dados socioeconômicos e de policiamento na ordenação dos clusters. Resumindo, quanto maior o efetivo policial por habitante e o IDH de renda mínima em determinado batalhão maior a probabilidade de se estar em um cluster de menor incidência criminal. / This multidisciplinary work use an applied math methodology, especially unsupervised learning, in public security data. We seek to find the similiarity beetwen policies battalions, using clustering methods, while otimizing numerically the McCLain index. Besides that, we extract learning from data, using OLogit models in cluster's order with feature variables. We find data clustering evidence and extract significance of socioeconomic and policing data in cluster's order. In summary, a higher police force per inhabitant and a higher minimum income HDI in a given batallion results in a greater probability of being in a cluster of lower criminal incidence.
|
Page generated in 0.0515 seconds