• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 53
  • 53
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

ON THE CONVERGENCE AND APPLICATIONS OF MEAN SHIFT TYPE ALGORITHMS

Aliyari Ghassabeh, Youness 01 October 2013 (has links)
Mean shift (MS) and subspace constrained mean shift (SCMS) algorithms are non-parametric, iterative methods to find a representation of a high dimensional data set on a principal curve or surface embedded in a high dimensional space. The representation of high dimensional data on a principal curve or surface, the class of mean shift type algorithms and their properties, and applications of these algorithms are the main focus of this dissertation. Although MS and SCMS algorithms have been used in many applications, a rigorous study of their convergence is still missing. This dissertation aims to fill some of the gaps between theory and practice by investigating some convergence properties of these algorithms. In particular, we propose a sufficient condition for a kernel density estimate with a Gaussian kernel to have isolated stationary points to guarantee the convergence of the MS algorithm. We also show that the SCMS algorithm inherits some of the important convergence properties of the MS algorithm. In particular, the monotonicity and convergence of the density estimate values along the sequence of output values of the algorithm are shown. We also show that the distance between consecutive points of the output sequence converges to zero, as does the projection of the gradient vector onto the subspace spanned by the D-d eigenvectors corresponding to the D-d largest eigenvalues of the local inverse covariance matrix. Furthermore, three new variations of the SCMS algorithm are proposed and the running times and performance of the resulting algorithms are compared with original SCMS algorithm. We also propose an adaptive version of the SCMS algorithm to consider the effect of new incoming samples without running the algorithm on the whole data set. As well, we develop some new potential applications of the MS and SCMS algorithm. These applications involve finding straight lines in digital images; pre-processing data before applying locally linear embedding (LLE) and ISOMAP for dimensionality reduction; noisy source vector quantization where the clean data need to be estimated before the quanization step; improving the performance of kernel regression in certain situations; and skeletonization of digitally stored handwritten characters. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2013-09-30 18:01:12.959
12

旋翼UAS影像密匹配建物點雲自動分群之研究 / Automatic clustering of building point clouds from dense matching VTOL UAS images

林柔安, Lin, Jou An Unknown Date (has links)
三維城市模型之建置需求漸趨繁多,可提供都市規劃、城市導航及虛擬實境等相關應用,過去研究多以建置LOD2城市模型為主,且較著重於屋頂結構。近年來,逐漸利用垂直影像及傾斜影像作為原始資料,提供建物牆面之建置,並且,隨著無人機系統(Unmanned Aircraft System, UAS)發展,可利用其蒐集高解析度且高重疊垂直及傾斜拍攝之建物影像,並採影像密匹配技術產製高密度點雲,進而快速取得建物包含屋頂及牆面之三維資訊,而這些資訊可進一步提供後續建置LOD3建置層級之模型,而在建置前,首先須對資料進行特徵分析,萃取特徵點、線、面,進而提供建置模型所需之資訊。 因此,本研究期望利用密匹配點雲,計算其點雲特徵,並採用Mean Shift分群法(Comaniciu and Meer, 2002)萃取建物點雲資訊,並提供一最佳分群策略。首先,本研究將以UAS為載具,設計一野外率定場率定相機,並蒐集建物高重疊UAS影像密匹配產製高密度點雲,針對單棟建物高密度點雲,實驗測試點雲疏化程度後,依據疏化成果計算點雲特徵,並以此批點雲資料實驗測試Mean shift分群法(Cheng, 1995)中之參數,後設計分群流程以分離平面點群及曲面點群,探討分群成果以決定最佳分群策略。實驗結果顯示本研究提出之分群策略,可自動區分平面點群及曲面點群,並單獨將平面點群分群至各牆面。 / Unmanned Aerial System (UAS) offer several new possibilities in a wide range of applications. One example is the 3D reconstruction of buildings. In former times this was either restricted by earthbound vehicles to the reconstruction of facades or by air-borne sensors to generate only very coarse building models. UAS are able to observe the whole 3D scene and to capture images of the object of interest from completely different perspectives. Therefore, this study will use UAS to collected images of buildings and to generate point cloud from dense image matching for modeling buildings. In the proposed approach, this method computes principal orientations by PCA and identifies clusters by Mean shift clustering. Analyze the factors which can affect the clustering methods and try to decrease the use of threshold, and this result can cluster the façade of buildings automatically and offer the after building reconstruction for LOD3.
13

System Designs for Diabetic Foot Ulcer Image Assessment

Wang, Lei 07 March 2016 (has links)
For individuals with type 2 diabetes, diabetic foot ulcers represent a significant health issue and the wound care cost is quite high. Currently, clinicians and nurses mainly base their wound assessment on visual examination of wound size and the status of the wound tissue. This method is potentially inaccurate for wound assessment and requires extra clinical workload. In view of the prevalence of smartphones with high resolution digital camera, assessing wound healing by analyzing of real-time images using the significant computational power of today’s mobile devices is an attractive approach for managing foot ulcers. Alternatively, the smartphone may be used just for image capture and wireless transfer to a PC or laptop for image processing. To achieve accurate foot ulcer image assessment, we have developed and tested a novel automatic wound image analysis system which accomplishes the following conditions: 1) design of an easy-to-use image capture system which makes the image capture process comfortable for the patient and provides well-controlled image capture conditions; 2) synthesis of efficient and accurate algorithms for real-time wound boundary determination to measure the wound area size; 3) development of a quantitative method to assess the wound healing status based on a foot ulcer image sequence for a given patient and 4) design of a wound image assessment and management system that can be used both in the patient’s home and clinical environment in a tele-medicine fashion. In our work, the wound image is captured by the camera on the smartphone while the patient’s foot is held in place by an image capture box, which is specially design to aid patients in photographing ulcers occurring on the sole of their feet. The experimental results prove that our image capture system guarantees consistent illumination and a fixed distance between the foot and camera. These properties greatly reduce the complexity of the subsequent wound recognition and assessment. The most significant contribution of our work is the development of five different wound boundary determination approaches based on different computer vision algorithms. The first approach employs the level set algorithm to determine the wound boundary directly based on a manually set initial curve. The second and third approaches are the mean-shift segmentation based methods augmented by foot outline detection and analysis. These two approaches have been shown to be efficient to implement (especially on smartphones), prior-knowledge independent and able to provide reasonably accurate wound segmentation results given a set of well-tuned parameters. However, this method suffers from the lack of self-adaptivity due to the fact that it is not based on machine learning. Consequently, a two-stage Support Vector Machine (SVM) binary classifier based wound recognition approach is developed and implemented. This approach consists of three major steps 1) unsupervised super-pixel segmentation, 2) feature descriptor extraction for each super-pixel and 3) supervised classifier based wound boundary determination. The experimental results show that this approach provides promising performance (sensitivity: 73.3%, specificity: 95.6%) when dealing with foot ulcer images captured with our image capture box. In the third approach, we further relax the image capture constraints and generalize the application of our wound recognition system by applying the conditional random field (CRF) based model to solve the wound boundary determination. The key modules in this approach are the TextonBoost based potential learning at different scales and efficient CRF model inference to find the optimal labeling. Finally, the standard K-means clustering algorithm is applied to the determined wound area for color based wound tissue classification. To train the models used in the last two approaches, as well as to evaluate all three methods, we have collected about 100 wound images at the wound clinic in UMass Medical School by tracking 15 patients for a 2-year period, following an IRB approved protocol. The wound recognition results were compared with the ground truth generated by combining clinical labeling from three experienced clinicians. Specificity and sensitivity based measures indicate that the CRF based approach is the most reliable method despite its implementation complexity and computational demands. In addition, sample images of Moulage wound simulations are also used to increase the evaluation flexibility. The advantages and disadvantages of three approaches are described. Another important contribution of this work has been development of a healing score based mechanism for quantitative wound healing status assessment. The wound size and color composition measurements were converted to a score number ranging from 0-10, which indicates the healing trend based on comparisons of subsequent images to an initial foot ulcer image. By comparing the result of the healing score algorithm to the healing scores determined by experienced clinicians, we assess the clinical validity of our healing score algorithm. The level of agreement of our healing score with the three assessing clinicians was quantified by using the Kripendorff’s Alpha Coefficient (KAC). Finally, a collaborative wound image management system between the PC and smartphone was designed and successfully applied in the wound clinic for patients’ wound tracking purpose. This system is proven to be applicable in clinical environment and capable of providing interactive foot ulcer care in a telemedicine fashion.
14

Selection And Fusion Of Multiple Stereo Algorithms For Accurate Disparity Segmentation

Bilgin, Arda 01 November 2008 (has links) (PDF)
Fusion of multiple stereo algorithms is performed in order to obtain accurate disparity segmentation. Reliable disparity map of real-time stereo images is estimated and disparity segmentation is performed for object detection purpose. First, stereo algorithms which have high performance in real-time applications are chosen among the algorithms in the literature and three of them are implemented. Then, the results of these algorithms are fused to gain better performance in disparity estimation. In fusion process, if a pixel has the same disparity value in all algorithms, that disparity value is assigned to the pixel. Other pixels are labelled as unknown disparity. Then, unknown disparity values are estimated by a refinement procedure where neighbourhood disparity information is used. Finally, the resultant disparity map is segmented by using mean shift segmentation. The proposed method is tested in three different stereo data sets and several real stereo pairs. The experimental results indicate an improvement for the stereo analysis performance by the usage of fusion process and refinement procedure. Furthermore, disparity segmentation is realized successfully by using mean shift segmentation for detecting objects at different depth levels.
15

HIV Drug Resistant Prediction and Featured Mutants Selection using Machine Learning Approaches

Yu, Xiaxia 16 December 2014 (has links)
HIV/AIDS is widely spread and ranks as the sixth biggest killer all over the world. Moreover, due to the rapid replication rate and the lack of proofreading mechanism of HIV virus, drug resistance is commonly found and is one of the reasons causing the failure of the treatment. Even though the drug resistance tests are provided to the patients and help choose more efficient drugs, such experiments may take up to two weeks to finish and are expensive. Because of the fast development of the computer, drug resistance prediction using machine learning is feasible. In order to accurately predict the HIV drug resistance, two main tasks need to be solved: how to encode the protein structure, extracting the more useful information and feeding it into the machine learning tools; and which kinds of machine learning tools to choose. In our research, we first proposed a new protein encoding algorithm, which could convert various sizes of proteins into a fixed size vector. This algorithm enables feeding the protein structure information to most state of the art machine learning algorithms. In the next step, we also proposed a new classification algorithm based on sparse representation. Following that, mean shift and quantile regression were included to help extract the feature information from the data. Our results show that encoding protein structure using our newly proposed method is very efficient, and has consistently higher accuracy regardless of type of machine learning tools. Furthermore, our new classification algorithm based on sparse representation is the first application of sparse representation performed on biological data, and the result is comparable to other state of the art classification algorithms, for example ANN, SVM and multiple regression. Following that, the mean shift and quantile regression provided us with the potentially most important drug resistant mutants, and such results might help biologists/chemists to determine which mutants are the most representative candidates for further research.
16

Real Time Color Based Object Tracking

Ozzaman, Gokhan 01 May 2005 (has links) (PDF)
A method for real time tracking of non-rigid arbitrary objects is proposed in this study. The approach builds on and extends work on multidimensional color histogram based target representation, which is enhanced by spatial masking with a monotonically decreasing kernel profile prior to back-projection. The masking suppresses the influence of the background pixels and induces a spatially smooth target model representation suitable for gradient-based optimization. The main idea behind this approach is that an increase in the number of quantized feature spaces used to generate the target probability distribuition function during histogram back-projection can lead to improved target localization. Target localization is performed using the recursive Mean shift procedure, which climbs the underlying density graidients of the discrete data to find the mode (peak) of the distribution. Finally, the real time test cases, such as occlusion, target scale and orientation changes, varying illumination and background clutter, are demonstrated.
17

Uma nova abordagem para a identificação de ilhas genômicas em bactérias com base no método de agrupamento mean shift

Brito, Daniel Miranda de 24 February 2017 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2017-07-03T13:42:30Z No. of bitstreams: 1 arquivototal.pdf: 2175297 bytes, checksum: 0d32244b68ce823204f52f4f1ca022de (MD5) / Made available in DSpace on 2017-07-03T13:42:30Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2175297 bytes, checksum: 0d32244b68ce823204f52f4f1ca022de (MD5) Previous issue date: 2017-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Genomic islands (GIs) are regions of the bacterial and archaeal genomes that were acquired through the phenomenon of horizontal transfer. Usually, these regions provide important adaptations to these organisms, such as antibiotic resistance and pathogenicity, whose effects can be harmful to other species. For these reasons, many computational methodologies have been proposed for their prediction, however, none of them are capable to precisely identify the whole repertoire of islands present in a given genomic sequence. Therefore, the development of new approaches that explore different aspects of these regions is timely, allowing the identification of those not known. In this paper, it is proposed a novel method for the identification of GIs, built based on mean shift clustering algorithm, with the automatic bandwidth calculation, necessary to its operation. Test results with genomic island inserted in bacterial genomes show that the method is capable of identifying these regions, with sensitivity rates above 99%. Tests performed with bacterial genomes with known GIs revealed the potential of the method for their identification and for the discovery of new island. The detailed study of the new islands content pointed the presence of typical GIs elements, confirming its effectiveness in the prediction of these regions. / Ilhas genômicas (IGs) são regiões do genoma de bactérias e arqueas adquiridas por meio do fenômeno da transferência horizontal. Frequentemente, essas regiões proporcionam importantes adaptações a esses organismos, como resistência a antibióticos e patogenicidade, cujos efeitos podem ser danosos a outras espécies. Por essa razão, diversas metodologias computacionais foram propostas para a sua predição, porém nenhuma capaz de identificar o repertório completo de ilhas presentes em uma determinada sequência genômica. Portanto, torna-se oportuno o desenvolvimento de novas abordagens que explorem diferentes aspectos dessas regiões, permitindo a identificação daquelas não conhecidas. Nesse trabalho, propõe-se um novo método para a identificação de IGs, construído com base no algoritmo de agrupamento mean shift, com o cálculo automático da largura de banda, indispensável para o seu funcionamento. Resultados dos testes com ilhas genômicas inseridas em genomas de bactérias mostram que o método é capaz de identificar essas regiões com taxas de acerto acima de 99%. Testes realizados com genomas de bactérias com IGs conhecidas revelaram o potencial do método para a sua identificação e para a descoberta de novas ilhas. O estudo detalhado do conteúdo das novas ilhas apontou a presença de elementos típicos de IGs, confirmando a eficácia do método na predição dessas regiões.
18

Lip Detection and Adaptive Tracking

Wang, Benjamin 01 January 2017 (has links)
Performance of automatic speech recognition (ASR) systems utilizing only acoustic information degrades significantly in noisy environments such as a car cabins. Incorporating audio and visual information together can improve performance in these situations. This work proposes a lip detection and tracking algorithm to serve as a visual front end to an audio-visual automatic speech recognition (AVASR) system. Several color spaces are examined that are effective for segmenting lips from skin pixels. These color components and several features are used to characterize lips and to train cascaded lip detectors. Pre- and post-processing techniques are employed to maximize detector accuracy. The trained lip detector is incorporated into an adaptive mean-shift tracking algorithm for tracking lips in a car cabin environment. The resulting detector achieves 96.8% accuracy, and the tracker is shown to recover and adapt in scenarios where mean-shift alone fails.
19

Sledování vybraného objektu v dynamickém obraze / Object tracking in videofeed

Klvaňa, Marek January 2011 (has links)
The aim of this thesis is a description and implementation of algorithms of the tracked objects in the video feed. This thesis introduces Mean shift and Continuously adaptive mean shift algorithms which represent category based on kernel tracking. For construction of a model is used a threedimensional color histogram whose construction is described in this thesis as well. The achievements of described algorithms are compared in the testing images sequences and evaluated in details.
20

Building Boundary Sharpening In The Digital Surface Model Using Orthophoto

Gui, Xinyuan January 2019 (has links)
No description available.

Page generated in 0.023 seconds