• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multivariate Measures of Dependence for Random Variables and Levy Processes

Belu, Alexandru C. 21 May 2012 (has links)
No description available.
2

On Modern Measures and Tests of Multivariate Independence

Paler, Mary Elvi Aspiras 19 November 2015 (has links)
No description available.
3

Modelování přírodních katastrof v pojišťovnictví / Modelling natural catastrophes in insurance

Varvařovský, Václav January 2009 (has links)
Quantification of risks is one of the pillars of the contemporary insurance industry. Natural catastrophes and their modelling represents one of the most important areas of non-life insurance in the Czech Republic. One of the key inputs of catastrophe models is a spatial dependence structure in the portfolio of an insurance company. Copulas represents a more general view on dependence structures and broaden the classical approach, which is implicitly using the dependence structure of a multivariate normal distribution. The goal of this work, with respect to absence of comprehensive monographs in the Czech Republic, is to provide a theoretical basis for use of copulas. It focuses on general properties of copulas and specifics of two most commonly used families of copulas -- Archimedean and elliptical. The other goal is to quantify difference between the given copula and the classical approach, which uses dependency structure of a multivariate normal distribution, in modelled flood losses in the Czech Republic. Results are largely dependent on scale of losses in individual areas. If the areas have approximately a "tower" structure (i.e., one area significantly outweighs others), the effect of a change in the dependency structure compared to the classical approach is between 5-10% (up and down depending on a copula) at 99.5 percentile of original losses (a return period of once in 200 years). In case that all areas are approximately similarly distributed the difference, owing to the dependency structure, can be up to 30%, which means rather an important difference when buying the most common form of reinsurance -- an excess of loss treaty. The classical approach has an indisputable advantage in its simplicity with which data can be generated. In spite of having a simple form, it is not so simple to generate Archimedean copulas for a growing number of dimensions. For a higher number of dimensions the complexity of data generation greatly increases. For above mentioned reasons it is worth considering whether conditions of 2 similarly distributed variables and not too high dimensionality are fulfilled, before general forms of dependence are applied.

Page generated in 0.0824 seconds