• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biochemical and Cellular Characterization of Replication Factor A (RFA) During Meiosis and The DNA Damage Response in Saccharomyces cerevisiae

Adsero, Angela Marie January 2021 (has links)
Replication Factor A (RFA) is an essential heterotrimeric single-stranded DNA (ssDNA) binding complex, comprised of Rfa1, Rfa2, and Rfa3 in Saccharomyces cerevisiae. RFA is required for DNA replication, repair, recombination, and cell cycle regulation. RFA acts as a sensor of ssDNA, a common intermediate of these processes, and coordinates these processes through recruitment of proteins. For example, during the DNA damage response (DDR), RFA-coated ssDNA is necessary for the recruitment and activation of the sensor kinase Mec1. Additional checkpoint proteins, also recruited by RFA, are necessary for the downstream recruitment and activation of the effector kinase Rad53 that ultimately leads to cell cycle arrest. Thus, RFA acts as a bridge to recruit the proteins required for checkpoint regulation in response to DNA damage. Importantly, cell cycle resumption is contingent on Rad53 deactivation. There are two known scenarios in which Rad53 is deactivated: (1) checkpoint recovery, in which cells resume the cell cycle after DNA repair or (2) checkpoint adaptation, in which cells proceed with the cell cycle despite the continued presence of irreparable DNA damage. Previous work has demonstrated that cells undergoing checkpoint adaptation display late Rfa2 N-terminal (NT) phosphorylation that is correlated with the inactivation (dephosphorylation) of Rad53. Additionally, the use of rfa2 NT mutations consistently demonstrate that a negatively charged NT promotes adaptation in all adaptation-deficient strain backgrounds investigated. Interestingly, Rfa2 NT phosphorylation also occurs early during meiosis. This work demonstrates that: (1) Rfa1-DBD-F participates in protein-protein interactions that are sensitive to DNA damage, (2) Rfa2 phosphorylation increases the DNA damage sensitivity of mutants with deficient DNA damage checkpoints, (3) the Rfa2 NT is required for proper progression through meiosis that appears to be unrelated to RFA functions in replication or DNA repair by homologous recombination (HR), and (4) Rfa2 phosphorylation may regulate Mec1 checkpoint signaling during the DDR to control checkpoint exit and cell cycle resumption. A mechanism is proposed that considers both Rfa1 DBD-F and the Rfa2 NT involvement to initiate HR repair that essentially allows for the continuation of the cell cycle by the delocalization of Mec1.
2

Tel1p and Mec1p Regulate Chromosome Segregation and Chromosome Rearrangements in <italic>Saccharomyces cerevisiae</italic>

McCulley, Jennifer L. January 2010 (has links)
<p>Cancer cells often have elevated frequencies of chromosomal aberrations, and it is likely that loss of genome stability is one driving force behind tumorigenesis. Deficiencies in DNA replication, DNA repair, or cell cycle checkpoints can all contribute to increased rates of chromosomal duplications, deletions and translocations. The human ATM and ATR proteins are known to participate in the DNA damage response and DNA replication checkpoint pathways and are critical to maintaining genome stability. The <italic>Saccharomyces cerevisiae</italic> homologues of ATM and ATR are Tel1p and Mec1p, respectively. Because Tel1p and Mec1p are partially functionally redundant, loss of both Tel1p and Mec1p in haploid yeast cells (<italic>tel1 mec1</italic> strains) results in synergistically elevated rates of chromosomal aberrations, including terminal duplications, chromosomal duplications, and telomere-telomere fusions. To determine the effect of Tel1p and Mec1p on chromosome aberrations that cannot be recovered in haploid strains, such as chromosome loss, I investigated the phenotypes associated with the <italic>tel1 mec1</italic> mutations in diploid cells. In the absence of induced DNA damage, <italic>tel1 mec1</italic> diploid yeast strains exhibit extremely high rates of aneuploidy and chromosome rearrangements. There is a significant bias towards trisomy of chromosomes II, VIII, X, and XII, whereas the smallest chromosomes I and VI are commonly monosomic. </p> <p> The telomere defects associated with <italic>tel1 mec1</italic> strains do not cause the high rates of aneuploidy, as restoring wild-type telomere length in these strains by expression of the Cdc13p-Est2p fusion protein does not prevent cells from becoming aneuploid. The <italic>tel1 mec1</italic> diploids are not sensitive to the microtubule-destabilizing drug benomyl, nor do they arrest the cell cycle in response to the drug, indicating that the spindle assembly checkpoint is functional. The chromosome missegregation phenotypes of <italic>tel1 mec1</italic> diploids mimic those observed in mutant strains that do not achieve biorientation of sister chromatids during mitosis. </p> <p> The chromosome rearrangements in <italic>tel1 mec1</italic> cells reflect both homologous recombination between non-allelic Ty elements, as well as non-homologous end joining (NHEJ) events. Restoring wild-type telomere length with the Cdc13p-Est2p fusion protein substantially reduces the levels of chromosome rearrangements (terminal additions and deletions of chromosome arms, interstitial duplications, and translocations). This result suggests that most of the rearrangements in <italic>tel1 mec1</italic> diploids are initiated by telomere-telomere fusions. One common chromosome rearrangement in <italic>tel1 mec1</italic> strains is an amplification of sequences on chromosome XII between the left telomere and rDNA sequences on the right arm. I have termed this aberration a "schromosome." Preliminary evidence indicates that the schromosome exists in the <italic>tel1 mec1</italic> cells as an uncapped chromosome fragment that gets resected over time.</p> / Dissertation

Page generated in 0.0283 seconds