• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Large Force Range Mechanically Adjustable Dampers for Heavy Vehicle Applications

Burke, William Churchill Taliaferro 08 July 2010 (has links)
Semi-active dampers utilizing various working principles have been developed for a variety of vehicles. These semi-active dampers have been designed to resolve the ride and handling compromise associated with conventional passive dampers, and increase vehicle stability. This thesis briefly reviews existing semi-active damper designs, including but not limited to MR dampers, before presenting two new prototype semi-active hydraulic dampers. Both prototype dampers are designed to provide a large force range while maintaining easily controllable valve characteristics. The first of these dampers served primarily as a proof of concept and a means of understanding the dynamics of a disc valve housed inside the main piston. The valve design is presented, along with other information concerning the fabrication of the Initial Prototype damper. Test results are presented and analyzed, and a second iteration of the valve is designed. The Final Prototype damper is a scaled up version of the initial design, with refinements made in piston geometry, internal disc profile, and dynamic seals. This large force range damper is tested and results are compared with existing MR dampers. The Final Prototype damper provides a significantly larger force range when compared with typical MR dampers. Finally, to conclude this research, the vehicle dynamics implications of the Final Prototype damper are discussed and recommendations for further study are made. / Master of Science

Page generated in 0.1183 seconds