• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • Tagged with
  • 9
  • 9
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transport and retention of silver nanoparticles in granular media filtration

Kim, Ijung 24 October 2014 (has links)
The increasing use of engineered nanoparticles such as silver nanoparticles (AgNPs) has focused more attention on the transport of nanoparticles in natural and engineered systems. Despite a substantial number of studies on the transport of nanoparticles in groundwater flow conditions, other conditions such as those in granular media filtration in water treatment plant have not been fully explored. This study was designed to investigate the transport of AgNPs in granular media filtration with a relatively high filtration velocity (~2 m/hr) and a low influent AgNP concentration (~100 [mu]g/L). Effects of several physical and chemical parameters on the transport and attachment of AgNPs were examined, focusing on the colloidal filtration theory and particle-particle interaction, respectively. Regarding the transport of AgNPs, four physical parameters (filter depth, filtration velocity, filter media size, and AgNP size) were varied at a fixed chemical condition. Positively charged branched polyethylenimine (BPEI) capped AgNPs were chosen to examine the transport of AgNPs under electrostatically favorable attachment conditions. The effects of filter depth, filtration velocity, and filter media size on transport of AgNPs were adequately described by the well-known colloidal filtration model. However, deviation from the model prediction was apparent as the AgNP size became smaller, implying a possible variation of nanoparticle properties in the smaller size such as 10 nm. In the AgNP attachment study, negatively charged citrate- and polyvinylpyrrolidone (PVP)-capped AgNPs were employed to examine the chemical effects on particle (AgNP)-particle (filter media) interaction. When the ionic strength and ion type in the background water were varied, the attachment of citrate AgNPs followed the DLVO theory. Ca- or Mg-citrate complexation was found to lead to charge neutralization, resulting in a greater AgNP deposition onto the filter media. However, PVP AgNPs were only marginally affected by the electrostatic effect, demonstrating a stronger stabilizing effect by PVP than citrate. When natural organic matter (NOM) was introduced in the background water, the deviation from the DLVO theory was considered primarily due to the steric interaction by NOM coating onto particles. Different amounts of AgNP deposition for different types of NOM suggest the variation of steric effects according to the molecular weight of NOM. The deposition of humic acid-coated AgNPs was similar regardless of the capping agent, indicating the possible displacement of the capping agent by NOM. The electrostatic and steric interactions affected the detachment of AgNPs as well as the attachment of AgNPs. The amount of detachment depended on the depth and width of the secondary energy minimum. Also, the detachment was enhanced with NOM coating, probably due to a weak attachment by the steric effect. However, the hydrodynamic force employed in this study was insufficient to yield a remarkable detachment. Overall, the retention profile was a relatively vertical line (i.e., equal deposition with depth) when the AgNP aggregation was prevented by the electrostatic or steric repulsion, implying homogeneous AgNP capture throughout the filter bed. On the other hand, ripening (the capture of particles by attraction to previously retained particles) was favored at the top of the filter bed when the AgNP aggregation was allowable. / text
2

Exploring Pretreatments for the Solar Water Disinfection (SODIS) Process

Hirtle, Lacey Elizabeth January 2008 (has links)
The use of sunlight for water disinfection has been practiced since ancient times. Only in the last three decades has solar disinfection become widely recognized as a viable means of providing safe drinking water to the disadvantaged portion of the world’s population. The World Health Organization estimates that 1.6 million people die every year because of waterborne diseases. <br/><br/> The Swiss Federal Institute of Environmental Science and Technology and their Department of Water and Sanitation in Developing Countries have been instrumental in propagating the solar water disinfection (SODIS) process in developing countries. The reason for this technology being widely used and accepted is its ease of use and effectiveness: water is placed in clear plastic bottles and exposed to direct sunlight for approximately six hours. The microorganisms in the water absorb the sunlight and it, in turn at sufficient UV dosages, causes mutations to their genetic material, inhibiting reproduction. Although some pathogens may still be viable they are no longer infective. The result is microbiologically safe water. <br/><br/> Research to date has explored everything from which colour and size the SODIS containers should be to whether adding catalysts to the water before exposure improves disinfection. Apart from a few studies that examined the effect of shaking the bottles (to entrain air) before exposure, there has been limited research on pretreatments for enhancing solar disinfection. <br/><br/> The focus of this project was to explore two pretreatments for SODIS and determine how they affect the efficiency of the process. The first stage was to examine one of the currently used pretreatments: cleaning the water containers before use. The second stage was to develop an accessible, low-cost filtration technique to remove particles from the water before exposure to sunlight. Particles in the water disperse the light and protect the microorganisms from being inactivated, so it is important to have as few particles as possible; the recommended upper limit is 30 NTU for solar disinfection. In many instances, surface water with high turbidity (greater than 200 NTU) serves as the only source for drinking water in developing areas. <br/><br/> The first series of experiments in the current research evaluated if cleaning the bottles was necessary and if so, which cleaning agents would be most effective and available. The agents selected were 70% isopropyl alcohol, a soap-water mixture, and lime juice. The experiments demonstrated that cleaning with 70% isopropyl alcohol did not affect the process in any way. Cleaning with the soap-water mixture did have a slightly negative effect on the process; there was substantial microbial recovery when bottles were kept in the dark overnight. In the case of the lime juice, it actually inhibited the disinfection process. It is necessary to remove any debris that might exist within the containers before using them, but using a chemical cleaning agent or mechanically scrubbing can decrease the amount of disinfection that occurs during SODIS. Thus, it is suggested that using a chemical pretreatment is not necessary and has the potential to inhibit disinfection, especially without proper training or technical knowledge. <br/><br/> The second series of experiments identified the optimal design for a low-cost roughing filter that could be used to remove particles from water before exposure to sunlight. The roughing filter that was built from the same plastic pop bottles used for solar disinfection, as well as gravel and sand. It was constructed with three centimetres of gravel on the bottom of the pop bottle and then 17 cm of coarse sand was added on top to make the total filter height 20 cm. A 0.6 mm hole was made at approximately 1.5 cm from the bottom of the bottle using a standard sewing needle. Each filter run consisted of 10 L of water at approximately 200 NTU. Experimental results indicated that 95% removal of turbidity could be achieved. These roughing filters can be constructed from readily available and affordable materials in developing countries and produce an effluent water quality of less than 30 NTU when initial turbidities are greater than 200 NTU. <br/><br/> Finally, the third series of experiments focused on testing the newly developed roughing filter in series with SODIS to evaluate the system as a whole. The results confirmed that using the roughing filter, as a pretreatment to SODIS, is a highly effective means of improving the disinfection potential of the process. These roughing filters produce an effluent water quality of less than 30 NTU, which is required for SODIS, making them a viable pretreatment for turbid water intended for SODIS use.
3

Exploring Pretreatments for the Solar Water Disinfection (SODIS) Process

Hirtle, Lacey Elizabeth January 2008 (has links)
The use of sunlight for water disinfection has been practiced since ancient times. Only in the last three decades has solar disinfection become widely recognized as a viable means of providing safe drinking water to the disadvantaged portion of the world’s population. The World Health Organization estimates that 1.6 million people die every year because of waterborne diseases. <br/><br/> The Swiss Federal Institute of Environmental Science and Technology and their Department of Water and Sanitation in Developing Countries have been instrumental in propagating the solar water disinfection (SODIS) process in developing countries. The reason for this technology being widely used and accepted is its ease of use and effectiveness: water is placed in clear plastic bottles and exposed to direct sunlight for approximately six hours. The microorganisms in the water absorb the sunlight and it, in turn at sufficient UV dosages, causes mutations to their genetic material, inhibiting reproduction. Although some pathogens may still be viable they are no longer infective. The result is microbiologically safe water. <br/><br/> Research to date has explored everything from which colour and size the SODIS containers should be to whether adding catalysts to the water before exposure improves disinfection. Apart from a few studies that examined the effect of shaking the bottles (to entrain air) before exposure, there has been limited research on pretreatments for enhancing solar disinfection. <br/><br/> The focus of this project was to explore two pretreatments for SODIS and determine how they affect the efficiency of the process. The first stage was to examine one of the currently used pretreatments: cleaning the water containers before use. The second stage was to develop an accessible, low-cost filtration technique to remove particles from the water before exposure to sunlight. Particles in the water disperse the light and protect the microorganisms from being inactivated, so it is important to have as few particles as possible; the recommended upper limit is 30 NTU for solar disinfection. In many instances, surface water with high turbidity (greater than 200 NTU) serves as the only source for drinking water in developing areas. <br/><br/> The first series of experiments in the current research evaluated if cleaning the bottles was necessary and if so, which cleaning agents would be most effective and available. The agents selected were 70% isopropyl alcohol, a soap-water mixture, and lime juice. The experiments demonstrated that cleaning with 70% isopropyl alcohol did not affect the process in any way. Cleaning with the soap-water mixture did have a slightly negative effect on the process; there was substantial microbial recovery when bottles were kept in the dark overnight. In the case of the lime juice, it actually inhibited the disinfection process. It is necessary to remove any debris that might exist within the containers before using them, but using a chemical cleaning agent or mechanically scrubbing can decrease the amount of disinfection that occurs during SODIS. Thus, it is suggested that using a chemical pretreatment is not necessary and has the potential to inhibit disinfection, especially without proper training or technical knowledge. <br/><br/> The second series of experiments identified the optimal design for a low-cost roughing filter that could be used to remove particles from water before exposure to sunlight. The roughing filter that was built from the same plastic pop bottles used for solar disinfection, as well as gravel and sand. It was constructed with three centimetres of gravel on the bottom of the pop bottle and then 17 cm of coarse sand was added on top to make the total filter height 20 cm. A 0.6 mm hole was made at approximately 1.5 cm from the bottom of the bottle using a standard sewing needle. Each filter run consisted of 10 L of water at approximately 200 NTU. Experimental results indicated that 95% removal of turbidity could be achieved. These roughing filters can be constructed from readily available and affordable materials in developing countries and produce an effluent water quality of less than 30 NTU when initial turbidities are greater than 200 NTU. <br/><br/> Finally, the third series of experiments focused on testing the newly developed roughing filter in series with SODIS to evaluate the system as a whole. The results confirmed that using the roughing filter, as a pretreatment to SODIS, is a highly effective means of improving the disinfection potential of the process. These roughing filters produce an effluent water quality of less than 30 NTU, which is required for SODIS, making them a viable pretreatment for turbid water intended for SODIS use.
4

Moringa seed and pumice as alternative natural materials for drinking water treatment

Ghebremichael, Kebreab Afwerki January 2004 (has links)
Pumice and the Moringa oleifera (MO) seed were investigated as alternative natural materials for drinking water treatment based on problems identified at the Stretta Vaudetto water treatment plant in Eritrea. Lab and pilot scale studies showed that pumice was a suitable alternative material for dual media filtration. Conversion of the sand filters at Stretta Vaudetto to pumice-sand media would significantly improve performance of the filtration units. The coagulant protein from the MO seed was purified in a single-step ion exchange purification method. The parameters for batch purification were optimized that can be readily scaled up. This will promote its use in water treatment. A small volume coagulation assay method was developed that simplified and expedited the coagulation activity experiments. MO coagulant protein (MOCP) possessed considerable coagulation and sludge conditioning properties as alum. It also showed antimicrobial effects against bacteria, some of which are antibiotic resistant. The coagulation and antimicrobial properties of MOCP render it important in water treatment.
5

Moringa seed and pumice as alternative natural materials for drinking water treatment

Ghebremichael, Kebreab Afwerki January 2004 (has links)
<p>Pumice and the Moringa oleifera (MO) seed were investigated as alternative natural materials for drinking water treatment based on problems identified at the Stretta Vaudetto water treatment plant in Eritrea. </p><p>Lab and pilot scale studies showed that pumice was a suitable alternative material for dual media filtration. Conversion of the sand filters at Stretta Vaudetto to pumice-sand media would significantly improve performance of the filtration units. The coagulant protein from the MO seed was purified in a single-step ion exchange purification method. The parameters for batch purification were optimized that can be readily scaled up. This will promote its use in water treatment. </p><p>A small volume coagulation assay method was developed that simplified and expedited the coagulation activity experiments. MO coagulant protein (MOCP) possessed considerable coagulation and sludge conditioning properties as alum. It also showed antimicrobial effects against bacteria, some of which are antibiotic resistant. The coagulation and antimicrobial properties of MOCP render it important in water treatment.</p>
6

Application of indigenous materials in drinking water treatment

Kalibbala, Herbert Mpagi January 2007 (has links)
<p>Volcanic ash and Moringa oleifera (M. oleifera) were investigated as indigenous materials for drinking water treatment based on problems identified at Kampala and Masaka water treatment plants in Uganda. Coagulation experiments were done using swamp raw water at Masaka National Water & Sewerage Corporation water treatment plant and pilot-scale filtration experiments carried out at Ggaba II (Kampala) water treatment plant. The results from the study indicated that there were both operational and design handicaps at the treatment plants in Kampala. There is need to modify the filtration and clarification units to enable production of water meeting both the national and international standards. At Masaka water treatment, there was increase in trihalomethanes concentration as a result of pre-chlorination. Following aeration and pre-chlorination processes, the average increase of total trihalomethanes concentration was over 4000% with over 99% being chloroform. Preliminary results from the jar test experiments indicated that use of alum with MOCSC as coagulant aid is promising as a first stage in the treatment train for waters with a humic materials and high content of iron, typical of swamp water sources. This would probably eliminate the formation of unwanted by-products by eliminating the pre-chlorination process. Assessment of the characteristics of the volcanic ash showed that it meets the requirements for a filtration material; and results obtained from the pilot study showed that it was a suitable alternative material for use in a dual media filtration system. There was an increase in the filter run length of about two and half fold in the dual media filtration column compared to the mono medium column. Both columns produced similar water quality levels. Therefore, conversion of the rapid sand filters at Ggaba and similar water treatment plants in the country to dual media (volcanic ash on top of sand) systems would probably significantly improve the performance of the filtration systems.</p>
7

Quantifying image quality in diagnostic radiology using simulation of the imaging system and model observers /

Ullman, Gustaf, January 2008 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2008. / Härtill 6 uppsatser. Includes bibliographical references.
8

Quantifying image quality in diagnostic radiology using simulation of the imaging system and model observers /

Ullman, Gustaf, January 2008 (has links) (PDF)
Diss. (sammanfattning) Linköping : Linköpings universitet, 2008. / Härtill 6 uppsatser.
9

Application of indigenous materials in drinking water treatment

Kalibbala, Herbert Mpagi January 2007 (has links)
Volcanic ash and Moringa oleifera (M. oleifera) were investigated as indigenous materials for drinking water treatment based on problems identified at Kampala and Masaka water treatment plants in Uganda. Coagulation experiments were done using swamp raw water at Masaka National Water &amp; Sewerage Corporation water treatment plant and pilot-scale filtration experiments carried out at Ggaba II (Kampala) water treatment plant. The results from the study indicated that there were both operational and design handicaps at the treatment plants in Kampala. There is need to modify the filtration and clarification units to enable production of water meeting both the national and international standards. At Masaka water treatment, there was increase in trihalomethanes concentration as a result of pre-chlorination. Following aeration and pre-chlorination processes, the average increase of total trihalomethanes concentration was over 4000% with over 99% being chloroform. Preliminary results from the jar test experiments indicated that use of alum with MOCSC as coagulant aid is promising as a first stage in the treatment train for waters with a humic materials and high content of iron, typical of swamp water sources. This would probably eliminate the formation of unwanted by-products by eliminating the pre-chlorination process. Assessment of the characteristics of the volcanic ash showed that it meets the requirements for a filtration material; and results obtained from the pilot study showed that it was a suitable alternative material for use in a dual media filtration system. There was an increase in the filter run length of about two and half fold in the dual media filtration column compared to the mono medium column. Both columns produced similar water quality levels. Therefore, conversion of the rapid sand filters at Ggaba and similar water treatment plants in the country to dual media (volcanic ash on top of sand) systems would probably significantly improve the performance of the filtration systems. / <p>Obs! ISBN: 978-91-7283-565-76</p><p>QC 20101110</p>

Page generated in 0.1144 seconds