• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 40
  • 38
  • 32
  • 19
  • 13
  • 8
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 524
  • 65
  • 64
  • 57
  • 57
  • 56
  • 53
  • 45
  • 42
  • 38
  • 37
  • 36
  • 33
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Morphological and hydrodynamic instabilities in undirectional alloy solidification

Forth, Shaun Anthony January 1989 (has links)
No description available.
22

Investigation of siloxane-silica interactions by nuclear magnetic resonance and small-angle neutron scattering

Weatherhead, Ian January 1998 (has links)
No description available.
23

Glacier contribution to the North and South Saskatchewan Rivers

Comeau, Laura Elizabeth Lamplugh 17 March 2009
The hydrological model WATFLOOD and a volume-area scaling relationship are applied to estimate glacier wastage and seasonal Melt contribution to the headwaters of the North and South Saskatchewan Rivers on the eastern slopes of the Canadian Rocky Mountains from 1975-1998. Wastage is defined as the annual volume of glacier ice melt that exceeds the annual volume of snow accumulation into the glacier system, causing an annual net loss of glacier volume. Melt is defined as the annual volume of glacier ice melt that is equal to, or less than, the annual volume of snow that does not melt from the glacier and instead accumulates into the glacier system. It is proposed that the distinction between these two components of glacier runoff is important in studies of the impact of glacier variations on flow. A comparison of similar glacierised and non-glacierised basin hydrographs shows that glacierised basins have greater specific streamflow in the late summer months of otherwise low flow, and the presence of glaciers in a basin results in a lower coefficient of variation of the July to September and annual streamflow as a result of the natural regulating impact of glaciers on streamflow. Glacier wastage and Melt are estimated from a hydrological-hypsometric comparison of glacierised and non-glacierised basins, mass balance data from Peyto Glacier and the published work of other researchers. The similarity of these results to those from the volume-area scaling approach indicates that this is a suitable method for estimating glacier wastage on a regional scale. Whilst the WATFLOOD results were similar to those from the hydrological-hypsometric approach regionally, there were considerable differences between the estimates of combined glacier wastage and Melt from different methods in the small, highly glacierised Peyto Glacier basin. The WATFLOOD results, and thus the estimates of Melt, are therefore treated with caution and it is proposed that glacier runoff data is collected with which to improve the model calibration, verify results and make uncertainty estimations, currently prevented by the severe lack of data on glaciers in the North and South Saskatchewan River basins.<p> The results show that glacier wastage was smaller than Melt and varied between glaciers, though contributed over 10% to streamflow in a number of basins in the July to September period 1975-1998. Melt was positively correlated with basin glacier cover and contributed over 25% to streamflow from basins with glacier cover as little as 1% in the July to September period. The significance of Melt is manifest in its timing since it is equal to the annual volume of snow that accumulates into the glacier system, the volume of which melts as ice instead of snow thus entering the stream in the later summer months after snowmelt. Future glacier decline is therefore expected to result in an advancement of peak flow towards a snowmelt regime hydrograph, assuming that post glacial basin conditions do not similarly delay snowmelt runoff. The resulting reduced late summer flow, compounded by decreasing wastage contributions, is a concern for agricultural and industrial streamflow users, such as hydropower plants, and threatens ecological habitats. Downstream at Edmonton and Calgary, glacier wastage contributed approximately 3% of streamflow 1975-1998; however, Melt supplied over double this volume of flow thus the concern here is whether reservoir capacities are large enough to store a sufficient volume of the spring peak flow to meet supply needs in the late summer months of decreasing flows.
24

Glacier contribution to the North and South Saskatchewan Rivers

Comeau, Laura Elizabeth Lamplugh 17 March 2009 (has links)
The hydrological model WATFLOOD and a volume-area scaling relationship are applied to estimate glacier wastage and seasonal Melt contribution to the headwaters of the North and South Saskatchewan Rivers on the eastern slopes of the Canadian Rocky Mountains from 1975-1998. Wastage is defined as the annual volume of glacier ice melt that exceeds the annual volume of snow accumulation into the glacier system, causing an annual net loss of glacier volume. Melt is defined as the annual volume of glacier ice melt that is equal to, or less than, the annual volume of snow that does not melt from the glacier and instead accumulates into the glacier system. It is proposed that the distinction between these two components of glacier runoff is important in studies of the impact of glacier variations on flow. A comparison of similar glacierised and non-glacierised basin hydrographs shows that glacierised basins have greater specific streamflow in the late summer months of otherwise low flow, and the presence of glaciers in a basin results in a lower coefficient of variation of the July to September and annual streamflow as a result of the natural regulating impact of glaciers on streamflow. Glacier wastage and Melt are estimated from a hydrological-hypsometric comparison of glacierised and non-glacierised basins, mass balance data from Peyto Glacier and the published work of other researchers. The similarity of these results to those from the volume-area scaling approach indicates that this is a suitable method for estimating glacier wastage on a regional scale. Whilst the WATFLOOD results were similar to those from the hydrological-hypsometric approach regionally, there were considerable differences between the estimates of combined glacier wastage and Melt from different methods in the small, highly glacierised Peyto Glacier basin. The WATFLOOD results, and thus the estimates of Melt, are therefore treated with caution and it is proposed that glacier runoff data is collected with which to improve the model calibration, verify results and make uncertainty estimations, currently prevented by the severe lack of data on glaciers in the North and South Saskatchewan River basins.<p> The results show that glacier wastage was smaller than Melt and varied between glaciers, though contributed over 10% to streamflow in a number of basins in the July to September period 1975-1998. Melt was positively correlated with basin glacier cover and contributed over 25% to streamflow from basins with glacier cover as little as 1% in the July to September period. The significance of Melt is manifest in its timing since it is equal to the annual volume of snow that accumulates into the glacier system, the volume of which melts as ice instead of snow thus entering the stream in the later summer months after snowmelt. Future glacier decline is therefore expected to result in an advancement of peak flow towards a snowmelt regime hydrograph, assuming that post glacial basin conditions do not similarly delay snowmelt runoff. The resulting reduced late summer flow, compounded by decreasing wastage contributions, is a concern for agricultural and industrial streamflow users, such as hydropower plants, and threatens ecological habitats. Downstream at Edmonton and Calgary, glacier wastage contributed approximately 3% of streamflow 1975-1998; however, Melt supplied over double this volume of flow thus the concern here is whether reservoir capacities are large enough to store a sufficient volume of the spring peak flow to meet supply needs in the late summer months of decreasing flows.
25

Scaling Marangoni Flow in Melting or Welding

Yan, Geng-huei 11 July 2005 (has links)
In this study, shapes of the molten region and transport processes affected by thermocapillary convection in melting or welding pool irradiated by a low-power-density beam are determined from a scale analysis. A low-power-density-beam heating implies no deep and narrow cavity or keyhole taking place in the pool. In this work, the complicated flow pattern in the pool is influenced by an unknown shape of solid-liquid interface, and interactions between the free surface layer, corner regions, and boundary layer with phase transition on the solid-liquid interface. Since Prandtl number is much less than unity while Marangoni and Reynolds number can be more than in melting metals, an appropriate scaling mass, momentum, and energy transport subject to a force balance between viscous stress and surface tension gradient on the free surface account for distinct thermal and viscous boundary layers in these regions of different length, velocity, and temperature scales. The results find that shapes of the fusion zone, free surface velocity and temperature profiles are determined by Marangoni, 104 i Prandtl, beam power, Peclet, and Biot numbers, and solid-to-liquid thermal conductivity ratio. The predications agree with numerical computations.
26

Scale Analysis of Thermal & Fluid Flow Induced by Thermocapillary Force During Laser Melting

Yeh, Jih-Sheng 03 July 2006 (has links)
In this study, shapes of the molten region and transport processes affected by thermocapillary convection in melting or welding pool irradiated by a low-power-density beam are determined from a scale analysis for the first time. A low-power-density-beam heating implies no deep and narrow cavity or keyhole taking place in the pool. A quantitative determination of the fusion zone shape is crucial due to its close relationship with the strength, microstructure, and mechanical properties of the fusion zone. In this work, the complicated flow pattern in the pool is influenced by an unknown shape of solid-liquid interface, and interactions between the free surface layer, corner regions, and boundary layer with phase transition on the solid-liquid interface. Since Prandtl number is much less than unity while Marangoni and Reynolds number can be more than in melting metals, an appropriate scaling mass, momentum, and energy transport subject to a force balance between viscous stress and surface tension gradient on the free surface account for distinct thermal and viscous boundary layers in these regions of different length, velocity, and temperature scales. The results find that shapes of the fusion zone, free surface velocity and temperature profiles are determined by Marangoni, Prandtl, beam power, Peclet, and Biot numbers, and solid-to-liquid thermal conductivity ratio. The predications agree with numerical computations.
27

A modelling and remote sensing study of Antarctic icebergs

Gladstone, Rupert January 2001 (has links)
This is the first large-scale modelling study of iceberg trajectories and melt rates in the Southern Ocean. An iceberg model _ was seeded with climatological iceberg calving rates based on a calculation of the net surface accumulation from each snow catchment area on the Antarctic continent. In most areas modelled trajectories show good agreement with observed patterns of iceberg motion, though discrepancies in the Weddell Sea have highlighted problems in the ocean general circulation model output used to force the iceberg model. The Coriolis force is found to be important in keeping bergs entrained in the coastal current around Antarctica, and topographic features are important in causing bergs to depart from the coastal regions. The modelled geographic distribution of iceberg meltwater joining the ocean has been calculated, and is found in many near coastal regions to be comparable in magnitude to the excess of precipitation over evaporation (P-E). A remote sensing study of icebergs has been carried out in two locations in the Weddell Sea using SAR. This study has, for the first time, been able to calculate iceberg fluxes from satellite. The southwestwards flux of icebergs within 20 km of the coast at around 18°W, based on a one month period of observations, has been calculated at 50 to 70 Gta-1 (1Gt = 1012kg). This is 4 to 5% of the total iceberg discharge from Antarctica. The question of Antarctic mass balance is considered through comparison of modelresults and observations. Although a conclusion is not reached here, plans are presented for an iceberg observing programme and further model development which could resolve the problem
28

On the Melt Rate of Submerged Sediment-Laden Ice

Trowse, Gregory 16 April 2013 (has links)
Submerged sediment-laden ice blocks that form on the intertidal mud flats of the Minas Basin pose a potential threat to tidal turbines planned for deployment in the Minas Passage. Laboratory prepared ice blocks of varying sediment content, salinity, and length scale were melted in seawater of different temperatures. The effect of sediment inclusions on melt rate is related to changes in heat supply and the heat required to melt a unit mass of ice, where the former is affected by the strength of the convective current and the latter by the ice block properties. A melt rate model for submerged sediment-laden ice is developed, with free convection the dominant deterioration mechanism. The model provides probable upper limits to the lifetimes of submerged ice blocks in the field, and has been used to predict lifetimes of large submerged ice blocks using temperatures representative of seawater in the Minas Basin.
29

Orientation and crystallization in melt-spinning of poly(ethylene terephthalate) based compositions

Agarwal, Uday S. 05 1900 (has links)
No description available.
30

Properties of glass/polypropylene composites manufactured by weaving of pre-preg tapes and other routes

Al-Zubaidy, Majeed Nahee Shail January 2001 (has links)
This thesis reports a study on the melt impregnation and weaving of glass/PP pre-preg tapes into sheet for use as the precursor for pressed thermoplastic composite products, and a comparison of the properties attainable with those achievable by other comparable routes. Melt impregnation has been used successfully to manufacture well-impregnanted tapes of polypropylene and glass fibres, with and without coupling agent. It appears that weaving could be an economically viable process for converting unidirectional tape into a press-formable pre-preg.

Page generated in 0.0272 seconds