• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 244
  • 40
  • 38
  • 32
  • 19
  • 13
  • 8
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 524
  • 65
  • 64
  • 57
  • 57
  • 56
  • 53
  • 45
  • 42
  • 38
  • 37
  • 36
  • 33
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Magmatic processes at basaltic volcanoes : insights from the crystal cargo

Salem, Lois Claire January 2018 (has links)
A plethora of magmatic processing occurs in magma reservoirs, where melts are stored prior to eruption. Magma reservoirs are complex, open systems, and often multiple reservoirs are partially inter-connected from source to surface, giving rise to the term 'volcanic plumbing system'. Parental melts feeding these reservoirs can have diverse and distinct geochemical and petrological characteristics, and be variably evolved or enriched. These melts can also bring with them a crystal cargo that may remain in equilibrium in the magma reservoir, but may also be modified by reaction, resorption, crystallisation and diffusion. Melts and crystals can be transported between reservoirs, from the upper mantle and through the crust, leading to melt mixing, reactions and volatile exsolution. Basaltic volcanic systems are fed by primitive melts, and due to the rapid ascent of melts and short magma storage times, these volcanoes provide the best means of unravelling the mantle and crustal contribution to geochemical heterogeneity observed in erupted samples. Despite the potential chemical complexity of a magma reservoir, evidence for magma processing and reaction can be preserved in melt inclusion suites and the compositional structure of their host crystals. Magmatic processes during storage and transport at two basaltic volcanoes are investigated using two carefully selected eruptions: the 1669 eruption at Mt. Etna, and the 2007 Father's Day eruption at Kīlauea. A suite of diverse geochemical, petrological and petrographical observations, made at a range of length-scales, are combined and interpreted in tandem with geophysical monitoring data. The conclusions of these studies shed light on the architecture of each volcano's plumbing systems and basaltic plumbing systems in general. This thesis is divided into two parts. The first study unravels the crustal and mantle processes controlling melt geochemical heterogeneity at Mt. Etna, Sicily, during the 1669 eruption, the largest eruption in historical times. The 1669 melt inclusion suite arises from the mixing of two basaltic melts with similar major element compositions but very different trace and volatile element compositions. The melt geochemistry suggests that at least one end-member melt has been heavily influenced by assimilation of carbonate in the crust. The elevation in alkalis, caused by carbonate assimilation, enhances carbon and sulfur solubility in one end member. The melt inclusion suite indicates that mixing of these melts occurred in the shallow crust shortly before eruption and this mixing may be the cause of the enhanced $CO_{2}$ fluxes prior to eruptions at Mt. Etna. The second study is split into two parts. Each uses the eruptive products of the Father's Day eruption at Kīlauea and aims to unravel the connectivity of the plumbing system between the summit and East Rift Zone, with a focus on timescales of storage and transport. The first part investigates the melt geochemistry in terms of heterogeneity and volatile composition, and the second investigates the crystal cargo in terms of features of the macro-scale crystal cargo distribution and the micro-scale geochemical zoning of individual crystals. The integration of observations and models from these two studies constrains the pressure, temperature and composition of source magma feeding the Father's Day eruption. The eruption is investigated in the context of the "magma surge'' event that preceded the intrusion, as well as within the context of the longer-term trends in Kīlauea geochemistry at the summit and East Rift Zone. Melt inclusion and matrix glass volatile systematics provide insights into the degassing path of the magma and the duration of magma transport to the surface is constrained by diffusion modelling. Estimated timescales for ascent by diffusion modelling of macrocryst major element composition, melt inclusion water content and the melt Fe$^{3+}$/Fe$_{tot}$ ratio are in agreement with timescales observed from the geophysical data of $< $8 hours from reservoir depth to eruption. Both studies emphasise how petrological observations can supplement geophysical monitoring datasets collected at the surface to aid our interpretation of volcanic behaviour and eruption forecasting.
82

Rubber friction on ice : investigation of frictional heating and melt water film thickness

Parkanyi, Tamas January 2016 (has links)
Friction on ice is important for many different fields such as winter sports and vehicle traction. In vehicle handling, maximising the friction coefficient between tyres and the ice surface is key to safety. The friction coefficient between tyre rubber and ice has been observed to be as high as unity at low temperatures and as little as 0.05 close to the ice melting temperature. The observed low friction is due to thin water films generated through frictional heating. Little is known about the formation and behaviour of this fluid film and its thickness has been difficult to measure. Previous attempts included techniques such as capacitance, conductivity and fluorescence spectroscopy, however results have been inconsistent. The primary aim of this study was to develop a measurement technique for this lubricating layer, establishing its thickness and the conditions under which its presence results in low friction. This was done by designing a micro-scale linear tribometer (microtribometer) to measure the friction coefficient (μ) on ice under a microscope. Clear ice, and ice with fluorescent particles of various sizes were created. The two ice types were then joined and tested on. During a friction test on the microtribometer, the particles displaced in the direction of sliding due to melt water presence. Images of the ice surface were taken before and after a friction measurement was made, and the amount of particle movement was assessed. The size and displacement of particles were correlated to the range of melt water thickness for a given sliding condition. This study is the first direct measurement method for the melt water layer on ice. Frictional heating is generated through the physical contact of rubber and ice asperities. By conducting friction measurements with rubbers of varying shear modulus (G*) and surface roughness (Ra) on both the microtribometer and on our large–scale tribometer, FRIMA, analysis of the contact can be made over a range of length scales. Further insight into the interfacial effects was provided by surface roughness measurements of both ice and rubber before and ice after microtribometer tests and in FRIMA. Finally, the use of differential interference contrast in reflected light microscopy with ice friction measurements provided visual evidence of the melt water presence. It was found that the melt water thickness based on particle displacement was between 0.1 to 2μm, for a velocity of 4.3 ⇥ 10−4 ms−1 and 0.5MPa nominal load, between –6°C to 0°C. A decreasing film thickness was found with decreasing temperature and the friction coefficient increased with decreasing temperature. At higher temperatures, the differences between the rubbers on both FRIMA and the microtribometer were found to be negligible because of the lubricating layer. Increasing the rubber surface roughness was found to increase at high and decrease friction significantly at low temperatures. These phenomena can be explained by the decreasing amount of solid-solid contact. A simple analytical approach to interpret the results suggests that the rubber compresses significantly and the surface roughness is smoothened upon contact with ice. Furthermore, simple hydrodynamic shear calculations show that pure liquid shear is insufficient to account for the measured low μ values close to melting temperatures. The combined effect of the increasing melt water presence reducing the real contact area and the significant deformation of the rubber asperities failing to compensate for this reduced contact area can account for the results. It is anticipated that these results provide direction for finding ways to improve solid-solid contact between rubber and ice, as there is some viscoelastic dissipation even at conditions close to the melting temperature. Some topics for example are: improving the thermal conductivity of tyre compounds or further investigating the surface roughness of rubber and ice separately and with the thin liquid film in between.
83

Multiphase macroscale models for macrosegregation and columnar to equiaxed transition during alloy solidification

Torabi Rad, Mahdi 01 December 2018 (has links)
In the field of metal casting, solute composition inhomogeneities at the macroscale are called macrosegregation, and the transition from the elongated grains in the outer portions of a casting to the more rounded grains in the center is termed Columnar to Equiaxed Transition (CET). Simultaneous prediction of macrosegregation and CET is still an important challenge in the field. One of the open questions is the role of melt convection on the CET and the effect of the CET on macrosegregation. A three-phase macroscale model for macrosegregation and CET was developed. The model accounts for numerous phenomena such as columnar dendrite tip undercooling, undercooling behind the columnar tips, and nucleation of equiaxed grains. This three-phase model was used to develop a less complex model that consists of two phases only and disregards undercooling behind the columnar tips and nucleation of equiaxed grains. An in-house parallel computing code on the OpenFOAM platform was developed to solve the equations of these models. The models were used to perform columnar solidification simulations of a numerical benchmark problem. It was found that the predictions of these models are nearly identical. It was also found that the dendrite tip selection parameter, which appears in the constitutive relation for the dendrite tip velocity, plays a key role in these models. With a realistic value for this parameter these models account for columnar dendrite tip undercooling, but as its value is increased in the simulations, predictions of these models converge to predictions of a model that neglects undercooling. Next, the three-phase model was used to perform CET simulations in the numerical solidification benchmark problem in the presence of melt convection. It was found that accounting for stationary equiaxed grains does not change the overall macrosegregation pattern nor the form of channel segregates. Finally, for the first time in the field of solidification, we developed accurate constitutive relations for macroscale solidification models that are based on a formal mesoscale analysis on the scale of a representative elementary volume that is used in developing volume-averaged macroscale models. This upscaling enabled us to present relations that incorporate changes in the shape of grains and solute diffusion conditions around them during growth. The models and constitutive relations we developed can now be used to predict critical phenomena such as macrosegregation, channel segregates, and CET in castings.
84

Volatiles in Melt Inclusions from Mexican and Nicaraguan Volcanoes: Implications for Complex Degassing Processes

Atlas, Zachary D. 04 August 2008 (has links)
The first section of this work examines melt inclusions in phenocrysts from Volcán Popocatépetl and Volcán de Colima within the Trans Mexican Volcanic Belt (TMVB). These inclusions are dacitic to rhyolitic. Trends in melt inclusion major element and water concentrations form the evolved extension of other Mexican volcanics including those presumably derived directly from primitive melts. Water concentrations in Popocatépetl and Colima melt inclusions are similar (0.3 to 3.4 weight percent Hsub2O). Melt-vapor equilibration pressures calculated from dissolved Hsub2O and COsub2 (Popocatépetl) or Hsub2O (Colima) in melt inclusions correspond to depths of entrapment of 12 km or less. Water and carbon dioxide concentrations correlate negatively with SiOsub2 and potassium. Normalized olivine-augite-quartz compositions are consistent with near cotectic crystallization under vapor-saturated conditions at pressures of 1.5 kb or less. Our results show that Popocatépetl and Colima magmas have undergone vapor-saturated crystallization during ascent in conjunction with varying degrees of mixing between degassed rhyo-dacitic and less degassed, mafic melts in the upper portions of the crust. These data suggest melt evolution occurred in conduits or inter-fingered dikes rather than a large stratified magma chamber. Part II looks at the Masaya caldera in Nicaragua. This volcano has erupted frequently in recorded history, producing lava lakes and very high gas emissions. Melt inclusions from Masaya are basaltic, with low Hsub2O (below 0.5 wt. %), low S (less than 300 ppm) and high COsub2 concentrations (up to approximately 6000 ppm). Relationships between water, sulfur, Cl and F in combination with Masaya's high COsub2 and Ba/Zr and Ba/Nb ratios suggest that Masaya has undergone a multi stage degassing process involving 1) shallow degassing, 2) recycling of magma into a deeper reservoir, and 3) fluxing of previously degassed magma with a nearly pure COsub2 vapor. Trace element signatures of melt inclusions are consistent with contributions that have been variably metasomatized by fluids generated by dehydration of subducted sediments and/or altered oceanic crust.
85

Deformation of a partially molten D” layer by small-scale convection and the resulting seismic anisotropy and ultralow velocity zone

Okamoto, Tatsuto, Sumita, Ikuro, Nakakuki, Tomoeki, Yoshida, Shigeo 11 1900 (has links)
No description available.
86

Physical-mechanical and chemical properties of topical films produced by hot-melt extrusion /

Repka, Michael Andrew, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 286-299). Available also in a digital version from Dissertation Abstracts.
87

Enhanced adhesion performance of primer to thermoplastic olefins by low temperature cascade arc discharge plasmas

Lin, Yung-Sen, January 1996 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1996. / Typescript. Vita. Includes bibliographical references (leaves 201-208). Also available on the Internet.
88

Multilayered membranes for modified atmosphere packaging

Offord, Grant Thomas 31 October 2013 (has links)
This dissertation discusses, in brief, the production and transport property characterization of films made from the extrusion and biaxial stretching of [beta] nucleated isotactic polypropylene and the extrusion of PEBAX block copolymers. Multilayered films for modified atmosphere packaging applications were also produced by coextrusion and biaxial stretching of these two materials and similarly characterized. Current membranes for packaging applications are generally produced by coating a porous support with a polymeric solution to deposit an active layer for separation. The goal of this project is to displace membranes produced by solvent-based processes, which are environmentally hazardous and thus costly, with equivalent or superior materials produced using melt extrusion. / text
89

Hot-melt Extrusion Through Syringes

O'Connell, Sean Patrick January 2014 (has links)
The use of solid dispersions to formulate poorly water soluble drugs is a growing field in the pharmaceutical sciences. Hot-melt extrusion is a common method for producing dispersions. However, bench-top extruders require large amounts of powder to run and are inappropriate for early formulation screens. Plastic and glass syringes are readily available in most laboratories. 250 mg of drug-polymer blend is placed in a plastic syringe body that has the tip covered with a bent needle. The syringe is heated for 5 minutes and the extrudate is pushed through the syringe. Extrudates are characterized by differential scanning calorimetry and powder x-ray diffraction. Acetaminophen, griseofulvin, indomethacin, salicylamide, and sulfamethoxazole extruded with polyvinylpyrrolidone K12 match or exceed the performance of solvent evaporated controls. Glass syringes can be used when polymers have processing ranges above the melting point of the plastic syringes. Syringe extrusion is effectively demonstrated as a rapid process for early formulation screening.
90

High throughput genotyping of single nucleotide polymorphisms in the Plasmodium falciparum dhfr and dhps genes by asymmetric PCR and melt-curve analysis

Cruz, Rochelle Unknown Date
No description available.

Page generated in 0.035 seconds