• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vliv alelických variant transportéru ABCG2 na transport kyseliny močové / Effect of ABCG2 allelic variants on the transport of uric acid

Vávra, Jiří January 2019 (has links)
Uric acid is a main metabolite of purine degradation in humans and in higher primates. Its increased plasmatic level is called hyperuricemia and may be the cause of gout and many other similar diseases. Uricemia is controlled by many transporters, which are located in proximal tubule of human kidney. When some transporter have abnormal function, the physiological plasmatic level of uric acid may be impaired. In genome wide association study (GWAS) it was discovered that some hyperuricemia or gout patients have ABCG2 protein damaged. This protein carries out uric acid from epithelial cell to the urine. The goal of this diploma thesis is the determination of transport capacity of ABCG2 allelic variants found via GWAS (Institute of Rheumatology of 1st medical faculty UK in Prague) in vitro with Xenopus laevis oocyte expression system. Uric acid secretion was compared with wild type variant. Keywords: Uric acid, GWAS study, Xenopus laevis, membrane transport protein, ABCG2
2

Small Molecule Modulation of GLUT1-Mediated Glucose Transport

Ojelabi, Ogooluwa A. 21 December 2017 (has links)
The glucose transport protein, GLUT1, is highly expressed in rapidly proliferating cells, including cancer cells, while decreased GLUT1 levels are found in diseases such as GLUT1 deficiency syndrome and Alzheimer’s. There is increased interest in developing GLUT1 inhibitors as novel anticancer therapeutics, and the discovery of compounds that directly stimulate GLUT1 function. This work investigates how small molecules stimulate and/or inhibit GLUT1-mediated glucose transport, either directly or through the AMPK pathway. Using sugar transport assays and docking analyses to explore Ligand–GLUT1 interactions and specificity of binding, we show that: 1) Ligands inhibit GLUT1 by competing with glucose for binding to the exofacial or endofacial sugar binding sites; 2) Subsaturating inhibitor concentrations stimulate sugar uptake; 3) Ligands inhibit GLUT1–, GLUT3– and GLUT4–mediated sugar uptake in HEK293 cells; and 4) Inclusion of a benzonitrile head group on endofacial GLUT1 inhibitors confers greater inhibitory potency. Furthermore, we investigated AMPK-regulated GLUT1 trafficking in cultured blood-brain barrier endothelial cells, and show that inhibition of GLUT1 internalization is not responsible for increased cell surface levels of GLUT1 observed with AMPK activation in these cells. This study provides a framework for screening candidate GLUT1 inhibitors for specificity, and for optimizing drug design and delivery. Our data on transport stimulation at low inhibitor concentrations support the idea that GLUT1 functions as a cooperative oligomer of allosteric alternating access subunits.

Page generated in 0.0898 seconds