Spelling suggestions: "subject:"mes design""
1 |
Design, Fabrication and Characterization of Low Voltage Capacitive RF MEMS SwitchesShekhar, Sudhanshu January 2015 (has links) (PDF)
This dissertation presents the design, fabrication, and characterization of low-voltage capacitive RF MEMS switches. Although, RF MEMS switches have shown superior performance as compared to the existing solid-state semiconductor switches and are viable alternate to the present and the future communication systems, not been able to match the commercial standards due to their poor reliability. Dielectric charging due high actuation is one of the major concerns that limit the reliability of these switches. Hence, the focus of this thesis is on the development of low actuation voltage RF MEMS switches without compromising much on their RF and dynamic performances i.e., low insertion loss and high isolation. Four different switch topologies are studied and discussed. Electromechanical and electromagnetic modelling is presented to study the effect of various components that comprise a MEMS switch on the transient and the RF behaviour. The analytical expressions for switching and release times are established in order to estimate the switching and release times.
An in-house developed surface micromachining process is adapted for the micro fabrication. This process eliminates the need for an extra mask used for the anchors and restricts the overall process to four-masks only. These switches are fabricated on 500 µm thick glass substrate. A 0.5 µm thick gold film is used as the structural material. For the final release of the switch, chemical wet etching technique is employed.
The fabricated MEMS switches are characterized mechanically and electrically by measuring mechanical resonant frequency, quality factor, pull-in, and pull-up voltages. Since, low actuation voltage switches have slow response time. One of the key objectives of this thesis is to realize switches with fast response time at low actuation voltage. Measurements are performed to estimate the switching and release times. The measured Q-factors of switches are found to be in between 1.1 -1.4 which is the recommended value for Q in MEMS switches for a suppressed oscillation after the release. Furthermore, the effect of hole size on the switching dynamics is addressed. RF measurements are carried out to measure the S-parameters in order to quantify the RF performance.
The measured results demonstrate that these switches need low actuation voltage in range of 4.5 V to 8.5 V for the actuation. The measured insertion loss less than -0.8 dB and isolation better than 30 dB up to 40 GHz is reported.
In addition, the robustness of realized switches is tested using in-house developed Lab View-based automated measurement test set-up. The reliability test analysis shows no degradation in the RF performance even after 10 millions of switching cycles. Overall yield of 70 -80% is estimated in the present work. Finally, the experimentally measured results presented in this work prove the successful development of low actuation voltage capacitive RF MEMS switches and also offers that even with 0.5 µm thick gold film better reliability for MEMS switches can be achieved.
|
2 |
A Novel Indirect Actuation Concept for MEMS MicromirrorsKaupmann, Philip 07 May 2021 (has links)
Scannende MEMS-Mikrospiegel stellen eine vielversprechende technologische Entwicklung mit potentiellen Anwendungen im Bereich der miniaturisierten Bildprojektion und Umgebungssensierung dar. Im Regelfall oszilliert das Spiegelelement hierbei resonant um die horizontale Achse, während die vertikale Achse statisch ausgelenkt wird. Somit ergibt sich ein sogenannter Raster-Scan. Während eine resonante Aktuierung in MEMS-Technologie im Frequenzbereich mehrerer kHz effizient umgesetzt werden kann, stellt die Implementierung statischer Antriebe eine Herausforderung dar. In dieser Arbeit wird ein neuartiges Aktuierungskonzept vorgestellt, das effizientere quasi-statische Auslenkung ermöglicht. Hierfür wird der Drehimpuls, der durch die hochfrequente horizontale Schwingung erzeugt wird, durch eine weitere resonante Oszillation ähnlicher Frequenz gestört, wodurch sich ein für die quasi-statische Auslenkung nutzbares Drehmoment ergibt.
Da gyroskopische Effekte ausgenutzt werden, die nicht in aktuellen auf Modalanalyse basierenden Simulationsmethoden berücksichtigt sind, werden Starrkörper- und transiente FEM-Modelle entwickelt, um die Realisierbarkeit des Antriebskonzepts simulatorisch zu verifizieren.
Im Rahmen der durch den genutzten Prozess gegebenen Randbedingungen werden daraufhin Aktuierungselemente für die resonanten Achsen erarbeitet und mit diesen zwei Designvarianten eines 2D-Mikrospiegels erstellt. Nach modellbasierter Verifikation werden diese in einer MEMS-Fertigungslinie prozessiert.
Mit den generierten Mustern wird dann eine vollständige experimentelle Charakterisierung unter Nutzung eines speziell erstellten FPGA-basierten Evaluations-Boards durchgeführt. Beide Design-Varianten zeigen hierbei voll funktionsfähige Sensierungs- und Aktuierungselemente. Es kann ein erfolgreicher Nachweis der Funktionsfähigkeit des neuartigen Antriebskonzepts vollbracht werden. Die dabei gezeigte 2D-Projektion erreicht Winkel von 12° x 1.8° / Scanning MEMS micromirrors are an emergent technology for compact form factor image projection and environment sensing applications. Commonly the mirror element oscillates resonantly along the horizontal axis, whereas it is deflected statically along the vertical axis, performing a so called raster scan. While resonant actuation can be implemented efficiently in MEMS, static deflection however remains challenging. In this thesis a novel actuation concept for 2D MEMS micromirrors is introduced that potentially enables efficient quasi-static actuation. Therefore the angular momentum that is generated by the high frequency resonant axis is disturbed by an orthogonal resonant oscillation of similar frequency, leading to a torque that can be utilized to achieve an indirect quasi-static deflection.
As in this case gyroscopic effects are exploited that are usually not considered in state of the art modal finite element based MEMS simulation, in order to validate the feasibility of the actuation concept rigid body and transient finite element based models are developed and simulation studies conducted. Using an existing manufacturing process as a framework, actuation schemes for the resonant axes are introduced and two distinct micromirror designs are developed and verified by simulation. These are processed in a MEMS manufacturing line.
A thorough characterization study is then carried out using a custom FPGA based evaluation board with closed loop control capabilities. Both design variants are functional with regard to all actuation and tilt angle detection elements. A successful implementation of the proposed actuation concept is shown achieving 2D projection of a laser beam with tilt angles of 12 ◦ × 1.8 ◦ in frequency and amplitude controlled operation.
|
Page generated in 0.0647 seconds