• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Baroclinic developments in jet entrances and exits

Hare, Sylvia January 1999 (has links)
No description available.
2

Oscillations of the intertropical convergence zone and the genesis of easterly waves

Toma, Violeta E. 02 July 2008 (has links)
We examine the eastern Pacific Ocean Intertropical Convergence Zone (ITCZ) both in its mean state and transient phases using a combined diagnostic, theoretical and numerical modeling approach. We note that the ITCZ is perpetually in a transient state with strong variability occurring on 4-8 day time scales. Transients, about half the amplitude of the mean ITCZ, propagate northwards from the near-equatorial southern hemisphere eventually increasing the convection in the vicinity of the mean ITCZ convection. It is argued that the mean ITCZ is continually inertially unstable with incursions of anticyclonic vorticity advected across the equator resulting in the creation of a divergence-convergence doublet. The low-level convergence generates convection and vortex tube stretching which generates cyclonic vorticity counteracting the northward advection of anticyclonic vorticity. During a cycle, the heating in the mid-troposphere near 10°N oscillated between 6 and 12 K/day at the inertial frequency of the latitude of the mean convection. The shallow meridional circulation, noted in the mean field in other studies, appears to be a result of the transient nature of the ITCZ. It is hypothesized that westward propagating equatorial waves result from the inertial oscillation of the ITCZ. To test that the waves are formed in situ in the eastern Pacific and not remnants of waves propagating from the Atlantic or promoted by the Central and South American orography, several numerical experiments are undertaken using a high-resolution regional model spanning the western Atlantic Ocean and the eastern Pacific. In the control case, the model is initialized at all boundaries with full high-frequency observations. In two additional experiments, these transients are filtered out, and a third experiment is run with the topography over a large part of Central and South America removed. In all experiments, westward propagating waves are formed in the region of high CEPG suggesting that the hypothesis of in situ development may be correct.
3

Structure and Dynamics of the Inter-tropical Convergence zones

Dixit, Vijay Vishal January 2015 (has links) (PDF)
The east-west oriented cloud bands in the tropics are called the Inter-tropical Con-vergence Zones (ITCZ). Till recently, the ITCZ has been assumed to have a simple vertical structure with convergence near the surface boundary layer and divergence near the tropopause. Recent work has shown that the ITCZ can have a complex ver-tical structure with multi-level ows. This complex structure has a profound impact on the mass, momentum and energy budget in the ITCZ. This thesis addresses the factors that govern the shallow meridional circulation that occurs in the ITCZ and the mechanisms that govern the abrupt poleward transition and the gradual poleward migration . The shallow meridional circulation forms when the boundary layer ow that con-verges in the ITCZ, rises above the boundary layer and diverges in the lower tropo-sphere. The ow above the boundary layer is in the direction opposite to the direction of the ow within the boundary layer. Some authors have argued that this is caused by the reversal of pressure gradients just above the boundary layer in response to strong sea surface temperature gradients. This hypothesis neglects the eect of plan-etary rotation on the ow and was found to be insucient to explain the formation of shallow meridional circulation. In the east Pacic ocean, the shallow circulation forms only to the south of the ITCZ when the ITCZ forms away from the equator, while it is absent when the ITCZ forms close to the equator. The aqua-planet simulations of the equatorial and the o-equatorial ITCZ were conducted using Community Atmosphere Model (CAM 3.0). The model used the Eulerian dynamical core with T42 horizontal resolution and 26 levels in vertical. Each simulation was run for 3 years and analysis of last six months was presented. The simulations reproduced the contrast in the vertical structure of the equatorial and o-equatorial ITCZ. The shallow circulation was simulated with-out the reversal of pressure gradients and the SST gradients were weakest when the shallow circulation was simulated. We have proposed a new mechanism for the exis-tence of shallow meridional circulation in the ITCZ. We have argued that, in Earth's atmosphere, the mean horizontal ow generally occurs in the direction perpendicular to the direction of applied pressure gradient due to the action of Coriolis force. If the local rotational eects of the ow (relative vorticity) cancels the action of the Coriolis force, then a ow along the pressure gradient is possible. We demonstrated that this condition was satised only to the south of the ITCZ when it forms away from the equator. The ITCZ is characterized by the maximum mass convergence in the boundary layer. The mass convergence is mainly caused by the deceleration of poleward ow in the boundary layer. When the ITCZ forms close to the equator, the ow in the boundary layer is a resultant of vector addition of three forces, a pressure gradient force in the north-south direction (i.e., the ow towards low pressure), a Coriolis force which acts in the east-west direction( perpendicular to the direction of the ow), and surface friction which opposes the resultant ow. When the ITCZ forms away from the equator a three way balance does not capture the dynamics of ow. As the poleward ow is accelerated towards low pressure, it has to advect a considerable amount of zonal momentum with it which acts to retard the poleward ow. This eect of advection of zonal momentum has to be included in the force balance to obtain an accurate estimate of the ow and associated convergence. The ITCZ acts like a heat engine. The energy is gained near the surface, some energy is transported towards pole while some is utilized in driving the meridional circulation. The rest is rejected near the tropopause. The transport within the troposphere occurs through the vertical or horizontal advection of the energy due to vertical and horizontal motions respectively. Our analysis of the ITCZ suggests that; a large amount of transport occurs through horizontal motions that was neglected in the previous studies. The detailed analysis suggests that the latent energy in the form of mass of water vapor is exported out of the ITCZ at dierent levels in association with the multilevel ows. The equatorial and the o-equatorial ITCZ are dierent because, evaporation is larger in the o-equatorial ITCZ when compared to the equatorial ITCZ. The ITCZ shows a strong sub-seasonal variability in its location in the Indian Ocean and the west Pacic Ocean during boreal summer. There are two favorable locations, one near the equator and another away from the equator, for formation of the ITCZ. The equatorial ITCZ either propagates abruptly or gradually to the o-equatorial location. A detailed analysis of moisture and momentum budget of the simulated abrupt and gradual propagations enabled us to separate the role of thermo-dynamic and dynamic processes. We found that, if the equatorial ITCZ would propa-gate abruptly or gradually to the o-equatorial location is decided by the availability of the water vapor in the boundary layer between the two locations of the ITCZ, i.e., by the thermodynamic processes. But, such a transition to the o-equatorial location is allowed only when the constraints imposed by the re-adjustment in the circulation are satised. In simple terms, these constraints emerge due to two processes. 1. The Earth (lower boundary of the atmosphere) spins at maximum eective radius near the equator. As a result, the atmosphere gains maximum angular momentum near the equator (`zonal momentum' in Cartesian co-ordinates) . The ITCZ is one of the primary avenues to transport the zonal momentum from the lower troposphere to the upper troposphere. When the favorable location of ITCZ is near the equator, the location of ITCZ and the location where atmosphere gains maximum zonal momentum are coincident. The ITCZ and associated meridional circulation transports the zonal momentum upwards which is then transported polewards. As the favorable location of ITCZ moves away from the equator, the two locations are die rent. As a result, the atmospheric ow has to re-adjust so that the zonal momentum is transported from the equator to the favorable location of the ITCZ which then transports it upwards and polewards. In summary, this thesis proposes a new mechanism for the generation of shallow meridional circulation, the abrupt transition and the gradual propagations of the ITCZ.
4

Understanding the Behavior of the Sun's Large Scale Magnetic Field and Its Relation with the Meridional Flow

Hazra, Gopal January 2017 (has links) (PDF)
Our Sun is a variable star. The magnetic fields in the Sun play an important role for the existence of a wide variety of phenomena on the Sun. Among those, sunspots are the slowly evolving features of the Sun but solar ares and coronal mass ejections are highly dynamic phenomena. Hence, the solar magnetic fields could affect the Earth directly or indirectly through the Sun's open magnetic flux, solar wind, solar are, coronal mass ejections and total solar irradiance variations. These large scale magnetic fields originate due to Magnetohydrodynamic dynamo process inside the solar convection zone converting the kinetic energy of the plasma motions into the magnetic energy. Currently the most promising model to understand the large scale magnetic fields of the Sun is the Flux Transport Dynamo (FTD) model. FTD models are mostly axisymmetric models, though the non-axisymmetric 3D FTD models are started to develop recently. In these models, we assume the total magnetic fields of the Sun consist of poloidal and toroidal components and solve the magnetic induction equation kinematicaly in the sense that velocity fields are invoked motivated from the observations. Differential rotation stretches the poloidal field to generate the toroidal field. When toroidal eld near the bottom of the convection zone become magnetically buoyant, it rises through the solar convection zone and pierce the surface to create bipolar sunspots. While rising through the solar convection zone, the Coriolis force keeps on acting on the flux tube, which introduces a tilt angle between bipolar sunspots. Since the sunspots are the dense region of magnetic fields, they diffuse away after emergence. The leading polarity sunspots (close to equator) from both the hemisphere cancel each other across the equator and trailing polarity sunspots migrate towards the pole to generate effective poloidal fields. This mechanism for generation of poloidal field from the decay of sunspots is known as Babcock-Leighton process. After the poloidal field is generated, the meridional flow carries this field to the pole and further to the bottom of the convection zone where differential rotation again acts on it to generate toroidal field. Hence the solar dynamo goes on by oscillation between the poloidal field and toroidal field, where they can sustain each other through a cyclic feedback process. Just like other physical models, FTD models have various assumptions and approximations to incorporate these different processes. Some of the assumptions are observationally verified and some of them are not. Considering the availability of observed data, many approximations have been made in these models on the theoretical basis. In this thesis, we present various studies leading to better understanding of the different processes and parameters of FTD models, which include magnetic buoyancy, meridional circulation and Babcock-Leighton process. In the introductory Chapter 1, we first present the observational features of the solar magnetic fields, theoretical background of the FTD models and motivation for investigating different processes. Most of the results of our work are presented in Chapters 2 - 7. In the Chapters 2 - 5, we explain various important issues regarding the treatment of magnetic buoyancy, irregularities of the solar cycle during descending phase, effect of different spatial structure of meridional flow on the dynamo and how dynamo generated fields would a ect the meridional ow using 2D axisymmetric Flux Transport Dynamo model. In the Chapters 6 & 7, the build up of polar fields from the decay of sunspots and a proper treatment of Babcock-Leighton process by invoking realistic convective flows, are presented using 3D Flux Transport Dynamo model. Finally the conclusions and future works are given in the Chapter 8. In 2D axisymmetric Flux Transport Dynamo models, the rise of the toroidal magnetic field through the convection zone due to magnetic buoyancy and then the generation of the poloidal magnetic field from these bipolar sunspots, has been treated mainly in two ways|a non-local method and a local method. In Chapter 2, we have analyzed the advantages and disadvantages of both the methods. We find that none of them are satisfactory to depict the correct picture of magnetic buoyancy because it is an inherently 3D process. Unless we go to the 3D framework of Flux Transport Dynamo models, we have to treat the magnetic buoyancy in such simplistic way. We find that the non-local treatment of magnetic buoyancy is very robust for a large span of parameter space but it does not take into account the depletion of flux from the bottom of the convection zone which has a significant importance in irregularity study of the solar cycle. The local treatment of magnetic buoyancy includes the flux depletion from the bottom of the convection zone and treats the magnetic buoyancy much realistically than the non-local treatment. But this local treatment of magnetic buoyancy is not so robust. We also pointed out that the long-standing issue about appearance of sunspots in the low-latitudes needs to be studied carefully. In Chapter 3, we have studied various irregularities of the solar cycle during its decaying phase. We have reported that the decay rate of the cycle is strongly correlated with amplitude of the same cycle as well as the amplitude of the next cycle from different sunspot proxies like sunspot number, sunspot area and 10.7 cm radio flux data. We explain these correlation from flux transport dynamo models. We nd that the correlations can only be reproduced if we introduce stochastic fluctuations in the meridional circulations. We also reproduced most of the correlation found in ascending and descending phase of the solar cycle from century long sunspot area data (Mandal et al., 2017) from Kodaikanal observatory, India which are in great agreement with the correlations found earlier from Greenwich sunspots data. In most of the FTD models, a single cell meridional circulation is assumed within the solar convection zone, with the equatorward return flow at its bottom. But with recent development in helioseismology, plenty of results have come out about various spatial structure of meridional circulation (Zhao et al., 2013; Schad et al., 2013; Rajaguru & Antia, 2015; Jackiewicz et al., 2015). Some helioseismology group (Zhao et al., 2013) reported that the meridional circulation has a double cell structure in solar convection zone and some groups (Schad et al., 2013; Jackiewicz et al., 2015) have reported a multi-cellular structure of meridional circulation in the convection zone. By probing the supergranular motion Hathaway (2012) estimated that the meridional ow has an equatorward return ow at the upper convection zone 70 Mm below the surface. In view of the above observed results, we have discussed in Chapter 4 what would happen to Flux Transport Dynamo model if we consider other structure of meridional circulation instead of single cell meridional circulation encompassing whole convection zone. We nd that the our dynamo model works perfectly ne as long as there is an equatorward propagation at the bottom of the convection zone. Our model also works with shallow meridional circulation as found by Hathaway (2012), if we consider the latitudinal pumping in our model. The temporal variation of meridional circulation on the surface is also observed from various measurement techniques. Chou & Dai (2001) rst observed a variation of meridional circulation with the solar cycle from their helioseismic measurements. Hathaway & Rightmire (2010) also found a variation up to 5 m s 1 for the solar cycle 23 by measuring the magnetic elements on the surface of the Sun. Recently Komm et al. (2015) have analyzed MDI and HMI Dopplergram data and reported a solar cyclic variation with detail latitudinal dependence. To explain this variation of the meridional circulation with the solar cycle, we construct a theoretical model by coupling the equation of the meridional circulation (the component of the vorticity equation within the solar convection zone) with the equations of the flux transport dynamo model in Chapter 5. We consider the back reaction due to the Lorentz force of the dynamo-generated magnetic fields and study the perturbations produced in the meridional circulation due to it. This enables us to model the variations of the meridional circulation without developing a full theory of the meridional circulation itself. We obtain results which reproduce the observational data of solar cycle variations of the meridional circulation reasonably well. We get the best results on assuming the turbulent viscosity acting on the velocity field to be comparable to the magnetic diffusivity (i.e. on assuming the magnetic Prandtl number to be close to unity). We have to assume an appropriate bottom boundary condition to ensure that the Lorentz force cannot drive a flow in the sub-adiabatic layers below the bottom of the tachocline. Our results are sensitive to this bottom boundary condition. We also suggest a hypothesis how the observed inward flow towards the active regions may be produced. In Chapter 6 and Chapter 7, we have studied some of the aspects of solar magnetic eld generation process using 3D dynamo model that were not possible to study earlier using axisymmetric 2D Flux Transport dynamo models. We have used the 3D dynamo model developed by Mark Miesch (Miesch & Dikpati, 2014; Miesch & Teweldebirhan, 2016) and study how polar fields build up from the decay of sunspots more realistically in Chapter 6. We first reproduce the observed butter y diagram and periodic solution considering higher diffusivity value than earlier reported results and use it as a reference model to study the build up polar fields by putting a single sunspot pair in one hemisphere and two sunspot pairs in both the hemispheres. The build up of the polar fields from the decay of sunspots are studied earlier using Surface Flux Transport model (Wang et al., 1989; Baumann et al., 2004; Cameron et al., 2010) which solve only radial component of the induction equation on the surface of the Sun ( | plane). But these 2D SFT models have some inherent limitation for not considering the 3D vectorial nature of the magnetic fields and subsurface processes. We have shown that not considering the vectorial nature and subsurface process has an important effect on the development of the polar fields. We have also studied the effect of a few large sunspot pairs violating Hale's law on the strength of the polar field in this Chapter. We nd that such ant-Hale sunspot pairs do produce some effect on the polar fields, if they appear at higher latitudes during the mid-phase of the solar cycle|but the effect is not dramatic. In Chapter 7, we have incorporated observed surface convective ows directly in our 3D dynamo model. As we know that the observed convective flows on the photosphere (e.g., supergranulation, granulation) play a key role in the Babcock-Leighton (BL) process to generate large scale polar fields from sunspots fields. In most surface flux transport (SFT) and BL dynamo models, the dispersal and migration of surface fields is modeled as an effective turbulent diffusion. Recent SFT models have incorporated explicit, realistic convective flows in order to improve the fidelity of convective transport but, to our knowledge, this has not yet been implemented in previous BL models. Since most Flux-Transport (FT)/BL models are axisymmetric, they do not have the capacity to include such flows. We present the first kinematic 3D FT/BL model to explicitly incorporate realistic convective flows based on solar observations. Though we describe a means to generalize these flows to 3D, we find that the kinematic small-scale dynamo action they produce disrupts the operation of the cyclic dynamo. Cyclic solution is found by limiting the convective flow to surface flux transport. The results obtained are generally in good agreement with the observed surface flux evolution and with non-convective models that have a turbulent diffusivity on the order of 3 1012 cm 2 s 1 (300 km2 s 1). However, we nd that the use of a turbulent diffusivity underestimates the dynamo efficiency, producing weaker mean fields than in the convective models. Also, the convective models exhibit mixed polarity bands in the polar regions that have no counterpart in solar observations. Also, the explicitly computed turbulent electromotive force (emf) bears little resemblance to a diffusive flux. We also find that the poleward migration speed of poloidal flux is determined mainly by the meridional flow and the vertical diffusion.

Page generated in 0.1387 seconds