• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 355
  • 315
  • 148
  • 52
  • 36
  • 36
  • 19
  • 19
  • 12
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1133
  • 745
  • 740
  • 423
  • 243
  • 222
  • 219
  • 210
  • 196
  • 190
  • 168
  • 156
  • 144
  • 129
  • 129
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Glucose and Amino Acid Metabolism and Non-invasive Assessment ofHuman Mesenchymal Stem Cell Chondrogenesis in Vitro

Zhong, Yi 07 September 2020 (has links)
No description available.
142

In vitro evaluation of equine bone-marrow derived mesenchymal stromal cells to combat orthopedic biofilm infections

Khatibzadeh, Sarah M. 18 August 2023 (has links)
Infections of fracture fixation implants and synovial structures are a primary cause of complications, increased treatment costs, and mortality in people and horses. Treatment failure is often due to biofilms that are communities of bacteria that are adhered to a surface or to each other and are surrounded in a self-secreted extracellular matrix. The biofilm matrix protects the indwelling bacteria from being killed by antibiotics and the immune system. Biofilms also stimulate chronic inflammation and tissue destruction, including peri-implant osteolysis and subsequent implant failure and chondromalacia with subsequent osteoarthritis. In horses, the resulting lameness, reduced athletic potential, and poor quality of life may necessitate euthanasia. Equine bone marrow-derived mesenchymal stromal cells (MSC) reduce inflammation and promote healing in musculoskeletal injuries and have recently been discovered to have antimicrobial properties. Equine MSC kill planktonic (free-floating) bacteria and prevent biofilm establishment in laboratory models. MSC from mice and people also promote the transition from acute inflammation to tissue regeneration (resolution of inflammation) by secretion of specialized pro-resolving lipid mediators (SPM). Whether equine MSC can disrupt established biofilms of orthopedic pathogens and modulate the inflammatory response to orthopedic biofilms is unknown. Using a novel biofilm-MSC co-culture model, our objectives were two-fold. We investigated whether MSC alone or with amikacin sulfate, an antibiotic used to treat equine orthopedic infections, could reduce biomass, pellicle size, and live bacteria of biofilms of orthopedic infectious agents S. aureus and E. coli. Next, we investigated whether MSC could modulate immune response to S. aureus biofilms by reducing secretion of pro-inflammatory cytokines by peripheral blood mononuclear cells (PBMC) and by secreting SPM. MSC demonstrated partial ability to reduce biofilms but performed differently on S. aureus versus E. coli biofilms. Co-culture of biofilms with MSC significantly reduced pellicle area of biofilms of both bacteria, reduced biomass of S. aureus biofilms, and killed live S. aureus bacteria. MSC combined with amikacin also significantly reduced S. aureus biomass to a greater extent compared to amikacin alone. The resolution in detecting differences between groups for E. coli was diminished because of high variation between biofilms treated with MSC between different donors and between control biofilms between experiments. Using the same experimental system, culture of S. aureus biofilms with MSC in the transwell inserts and PBMC in the bottom wells significantly reduced biofilm size compared to untreated biofilms. Co-culture of MSC and PBMC with S. aureus biofilms also significantly increased detection of multiple SPM on lipid chromatography-mass spectrometry compared to MSC or PBMC cultures alone. Using a commercial equine multiplex bead ELISA, multiple inflammatory cytokines and chemokines were increased when S. aureus biofilms were cultured with MSC and PBMC; however, these were not different from untreated biofilms. Our results indicate that the utility of MSC in combating orthopedic biofilm infections lies in their ability to disrupt the biofilm matrix and promote inflammation resolution. These findings support continued investigation into and optimization of the anti-biofilm mechanisms of MSC. / Doctor of Philosophy / Biofilms are coating layers made by bacteria to protect them from being killed by antibiotics or the immune system. Biofilms result in untreatable infection, chronic inflammation and tissue destruction in people and horses with bone and joint infections. The resulting complications, including pain, reduced mobility, and poor quality of life, may result in horses being euthanized. Equine bone marrow-derived mesenchymal stromal cells (MSC) kill free floating bacteria in laboratory models and reduce inflammation in orthopedic injuries. Whether MSC can disrupt formed biofilms and reduce inflammation resulting from biofilm infections is unknown. Using a laboratory model, our objectives were to determine: 1) whether MSC alone or with an antibiotic used to treat orthopedic infections in horses can disrupt biofilms and kill indwelling live bacteria of orthopedic infectious agents S. aureus and E. coli, and 2) whether MSC can modify the immune response to S. aureus biofilms. MSC demonstrated some biofilm reducing ability but performed differently on S. aureus versus E. coli biofilms. Specifically, MSC reduced the size of biofilms of both bacteria, reduced the coating layer of S. aureus biofilms alone and to a greater extent when combined with the antibiotic, and killed live S. aureus bacteria. Using the same system, culture of MSC with S. aureus biofilms and peripheral blood mononuclear cells (PBMC), a type of white blood cell, reduced biofilm size compared to controls. The addition of MSC and PBMC to S. aureus biofilms also increased detection of fatty acid-derived signals that promote resolution of inflammation, compared to controls. Multiple inflammatory cytokines and chemokines were increased with culture of MSC and PBMC with S. aureus biofilms but were not different from untreated biofilms. These results indicate that MSC may be useful to combat biofilm infections by breaking down the coating layer of biofilms and by promoting resolution of inflammation. Taken together, our results support continued investigation into the potential of MSC as a treatment for orthopedic biofilm infections. The potential of MSC to simultaneously break down biofilms and mitigate inflammation in orthopedic infections would improve cure rates and overall outcomes for horses and people afflicted with orthopedic biofilm infections.
143

Development of a Freeze-Drying Strategy to Store Human Bone Marrow Mesenchymal Stem/Stromal Derived Extracellular Vesicles for Applications in Stroke

Dorus, Brian 25 January 2023 (has links)
Mesenchymal stem/stromal cells (MSCs) release Extracellular vesicles (EVs) that are believed to play a major role in nerve regeneration after stroke. However, a major complication when trying to transition MSC-EVs from a pre-clinical to clinical setting is the convenient long-term storage of MSC-EVs. Therefore, we developed a strategy to freeze dry MSC-EVs to store them for more practical clinical applications. We first determined the optimal trehalose concentration for freeze drying the MSC-EVs, and we subsequently investigated the optimal freezing conditions. It was determined that 100 mM of trehalose and freezing temperature at -20°C were the optimal conditions to freeze dry the EVs. The therapeutic capabilities of the freeze-dried MSC-EVs was tested via tube formation assay and co-culturing them with neural stem/progenitor cells (NSPCs). It was found that human vein umbilical endothelial cells (HUVECs) treated with rehydrated MSCEVs promoted tube formation suggesting the trophic factors in the MSC-EVs survived the freeze-drying process. As for the NSPC co-culture, all treatments involving rehydrated MSC-EVs protected by trehalose during the freeze-drying process promoted proliferation and did not affect their ability to differentiate into oligodendrocytes, astrocytes, or neurons. Determining the optimum freezing-drying conditions allows us to stockpile a large amount of MSC-EVs at room temperature for on-demand applications.
144

Modelling Strategy for the Characterization and Prediction of IIFK-Based Hydrogel Stiffness for Cell Culture Applications

Othman, Eter 01 1900 (has links)
Due to the similar nature 3D synthetics share with in vivo cell conditions, peptide-based hydrogels pose an attractive strategy for the culturing of stem cells. One aspect of this unique cell culturing technique is the tunability of the hydrogel’s stiffness, a quality linked to stem cell differentiation. Due to this linkage, a methodology in which specific cell lineages are achieved within IIFK hydrogel cultures is proposed. This work provides an analysis for the peptide scaffold IIFK; it characterizes the effect between different peptide and PBS concentrations over the resulting hydrogel stiffness and develops a mathematical model to further elucidate this interaction. Nine different hydrogel formulations were made (with a minimum of eleven replicates each) and each of its replicate’s stiffness (storage modulus, Pa) was measured through rheological experiments. Then, two different methods of replicate selection were conducted and various models were derived, each using either of the two replicate selection methods and incorporating a specific number of replicates in their creation. Regardless of sample selection and replicate number, the generated models show extremely high significances between IIFK hydrogel stiffness and PBS concentrations over the resulting hydrogel stiffness. Data analysis shows that for IIFK, the hydrogel stiffness bears a strong behavior that can be modeled by a full quadratic equation. However, the data also shows that the dependency of the model is strongly correlated with the datasets chosen to produce it, with number of replicates and replicate values both resulting in differences in each model’s predictive reliability (e.g., 82% vs 91%). Therefore, while this thesis demonstrates the ability to model IIFK hydrogel behaviour with high predictability ratings, it also establishes the necessity of both producing more replicates as well as selecting the best values for IIFK-based hydrogel modelling.
145

Determination of Immunomodulatory Bioactivity Biomarkers and Mechanistic Insights in Umbilical Cord Mesenchymal Stromal Cells

Siriwardena, Dylan 28 November 2018 (has links)
Detrimental immune and inflammatory responses contribute to the pathogenesis of various conditions, including Crohn’s disease, Lupus, and sepsis.1,2,3 Unfortunately, novel treatments for detrimental immune and inflammatory responses have been met with little success. Mesenchymal stromal cells (MSCs) represent a promising cellular therapy to treat immune and inflammatory disorders due to their ability to suppress the immune system. However, despite their promise, clinical trials that have employed MSC cellular therapies have produced varying and sometimes conflicting results. These discrepancies have been partially attributed to the cellular heterogeneity within MSC populations. To address these discrepancies, I performed transcriptomic and proteomic analysis of MSCs with varying immunomodulatory capacity to identify robust immunomodulatory biomarkers and gain better mechanistic insights into MSC immunomodulatory function. In this study, MSCs with differing immunomodulatory function were identified and the effect of in vitro passaging and proinflammatory induction on immunomodulatory ability was characterized. To characterize MSC immunomodulatory control mechanisms, RNA sequencing and proteomic analyses were performed on MSCs with different immunomodulatory capabilities. These analyses enabled the identification of potential immunomodulatory biomarkers and regulatory mechanisms. Finally, to test the therapeutic efficacy of immunomodulatory MSC subpopulations, I developed a humanize mouse model for sepsis. Overall, this work contributes to our understanding of MSC immunomodulation and to the development of a robust MSC cellular therapeutics.
146

Interactions of Cells with Magnetic Nanowires and Micro Needles

Perez, Jose E. 12 1900 (has links)
The use of nanowires, nano and micro needles in biomedical applications has markedly increased in the past years, mainly due to attractive properties such as biocompatibility and simple fabrication. Specifically, these structures have shown promise in applications including cell separation, tumor cell capture, intracellular delivery, cell therapy, cancer treatment and as cell growth scaffolds. The work proposed here aims to study two platforms for different applications: a vertical magnetic nanowire array for mesenchymal stem cell differentiation and a micro needle platform for intracellular delivery. First, a thorough evaluation of the cytotoxicity of nanowires was done in order to understand how a biological system interacts with high aspect ratio structures. Nanowires were fabricated through pulsed electrodeposition and characterized by electron microscopy, vibrating sample magnetometry and energy dispersive X-ray spectroscopy. Studies of biocompatibility, cell death, cell membrane integrity, nanowire internalization and intracellular dissolution were all performed in order to characterize the cell response. Results showed a variable biocompatibility depending on nanowire concentration and incubation time, with cell death resulting from an apoptotic pathway arising after internalization. A vertical array of nanowires was then used as a scaffold for the differentiation of human mesenchymal stem cells. Using fluorescence and electron microscopy, the interactions between the dense array of nanowires and the cells were analyzed, as well as the biocompatibility of the array and its effects on cell differentiation. A magnetic field was additionally applied on the substrate to observe a possible differentiation. Stem cells grown on this scaffold showed a cytoskeleton and focal adhesion reorganization, and later expressed the osteogenic marker osteopontin. The application of a magnetic field counteracted this outcome. Lastly, a micro needle platform was fabricated through lithography and electrodeposition, characterized using the previously mentioned techniques and then evaluated as a vector for intracellular delivery. Fluorescence and electron microscopy imaging were first performed to assess the biocompatibility, cell spreading and the interface of the cells and the needles. Intracellular delivery of a fluorescent dye was achieved via inductive heating of the needles, with the results showing a dependency of delivery and cell survivability on the exposure time.
147

Role of Actin Cytoskeleton Filaments in Mechanotransduction of Cyclic Hydrostatic Pressure

Fulzele, Keertik S 07 August 2004 (has links)
This research examines the role of actin cytoskeleton filaments in chondroinduction by cyclic hydrostatic pressurization. A chondroinductive hydrostatic pressurization system was developed and characterized. A pressure of 5 MPa at 1 Hz frequency, applied for 7200 cycles (4 hours intermittent) per day, induced chondrogenic differentiation in C3H10T1/2 cells while 1800 cycles (1 hour intermittent) did not induce chondrogenesis. Quantitative analysis of chondrogenesis was determined as sulfated glycosaminoglycan synthesis and rate of collagen synthesis while qualitative analysis was obtained as Alcian Blue staining and collagen type II immunostaining. Actin disruption using 2 uM Cytochalasin D inhibited the enhanced sGAG synthesis in the chondroinductive hydrostatic pressurization environment and significantly inhibited rate of collagen synthesis to the mean level lower than that of the non-pressurized group. These results suggest an involvement of actin cytoskeleton filaments in mechanotransduction of cyclic hydrostatic pressure.
148

Identification of a Post-Transcriptional Mechanism Regulating Epithelial-Mesenchymal Transition

Hussey, George S. 11 December 2012 (has links)
No description available.
149

MBG - Induced EMT

Nadour, Alaa M. 13 November 2007 (has links)
No description available.
150

Testing for Osteogenic Potential of Human Mesenchymal Stem Cells

Lause, Gregory E. 23 August 2011 (has links)
No description available.

Page generated in 0.0711 seconds