• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metoprolol Impairs Mesenteric and Posterior Cerebral Artery Function in Mice

El Beheiry, Mostafa Hossam 31 December 2010 (has links)
Background/Rationale: In addition to their established cardioprotective role, β-adrenergic antagonists also increase the risk of stroke and mortality. We propose that a vascular mechanism could contribute to cerebral tissue ischemia in β-blocked patients. Methods: Cardiac output (CO), mean arterial pressure (MAP) and microvascular brain oxygen tension (PBrmvO2) were measured in anesthesized mice treated with metoprolol (3mg•kg-1, i.v.). Dose-response curves (DRCs) for adrenergic-agonists were generated in mesenteric resistance arteries (MRAs; isoproterenol, clenbuterol) and posterior cerebral arteries (PCAs; phenylephrine, isoproterenol) before and after metoprolol treatment. Results: Metoprolol reduced CO, maintained MAP and increased systemic vascular resistance (SVR) resulting in a decreased PBrmvO2 in mice. Metoprolol attenuated β-adrenergic mediated vasodilation in both MRAs and PCAs. Conclusions: Metoprolol reduced brain perfusion in mice. A decrease in CO contributed however, metoprolol also inhibited β-adrenergic vasodilation of mesenteric and cerebral arteries. This provides evidence in support of a vascular mechanism for cerebral ischemia in β-blocked patients.
2

Metoprolol Impairs Mesenteric and Posterior Cerebral Artery Function in Mice

El Beheiry, Mostafa Hossam 31 December 2010 (has links)
Background/Rationale: In addition to their established cardioprotective role, β-adrenergic antagonists also increase the risk of stroke and mortality. We propose that a vascular mechanism could contribute to cerebral tissue ischemia in β-blocked patients. Methods: Cardiac output (CO), mean arterial pressure (MAP) and microvascular brain oxygen tension (PBrmvO2) were measured in anesthesized mice treated with metoprolol (3mg•kg-1, i.v.). Dose-response curves (DRCs) for adrenergic-agonists were generated in mesenteric resistance arteries (MRAs; isoproterenol, clenbuterol) and posterior cerebral arteries (PCAs; phenylephrine, isoproterenol) before and after metoprolol treatment. Results: Metoprolol reduced CO, maintained MAP and increased systemic vascular resistance (SVR) resulting in a decreased PBrmvO2 in mice. Metoprolol attenuated β-adrenergic mediated vasodilation in both MRAs and PCAs. Conclusions: Metoprolol reduced brain perfusion in mice. A decrease in CO contributed however, metoprolol also inhibited β-adrenergic vasodilation of mesenteric and cerebral arteries. This provides evidence in support of a vascular mechanism for cerebral ischemia in β-blocked patients.

Page generated in 0.1276 seconds