• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 79
  • 79
  • 56
  • 24
  • 18
  • 18
  • 12
  • 12
  • 11
  • 11
  • 10
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Real-Time Strategies for the Deployment of Wireless Repeaters in Uncharacterized Environments

Giroux, Andrew 01 January 2016 (has links)
Modern society relies heavily on communication networks that in turn rely on both wired and wireless infrastructure. This work pertains to scenarios where a group of people or robots need to communicate in an environment where there is no preexisting communications infrastructure. These include sites of emergencies and disasters (e.g., inside burning buildings, search and rescue operations) and unexplored areas on Earth and other planets. Wireless ad hoc or mesh networks offer the ability to keep such entities connected, but they falter when any single entity wishes to leave the developed coverage area. Utilizing mobile repeater nodes can help, but is costly and complicated. By eliminating the need for repeater nodes to traverse the environment, their size and cost can be vastly reduced. This work explores the use of static "breadcrumb" repeater nodes to increase the reach of such a network. Determining when and where to place a static repeater node can be difficult in an environment where radio propagation characteristics are unknown. In this work, several algorithms for node placement are compared under the constraint that placement of a static repeater node should not dictate the entity's movement. The algorithms investigated range from calculating rolling averages to modeling channel parameters on-the-fly. The placement algorithms were configured to run in real-time on TP-Link MR-3040 portable WiFi routers and the approach is demonstrated in an outdoor uncharacterized environment.
12

Internet of Things mesh network : Using the Thread networking protocol

Alm, Anton January 2019 (has links)
This thesis summarizes my project in setting up a Thread network. The idea of this project was presented by the company ÅF in Karlstad, Sweden. ÅF wishes to upgrade their current demonstrator for IoT. The current demonstrator includes Azure Cloud component, Raspberry Pi, Bluetooth and Arduino components. The upgrade includes implementing Thread technology together with Thread verified hardware from Nordic semiconductor and the Raspberry Pi Foundation. Thread is an IoT mesh networking protocol that was released year 2014. Compared to Bluetooth it offers IP communication (including IPv6) combined with higher reliability, performance and security. The process of installing, compiling and configuring the Thread network is explained. The result is an operational thread network that has sensor devices sending data to an HTTP web server, where the data is stored and monitored. Though, there are many improvements and functions that can be implemented to make this demonstrator more appealing.
13

Multi-Channel Anypath Routing for Multi-Channel Wireless Mesh Networks

Lavén, Andreas January 2010 (has links)
<p>Increasing capacity in wireless mesh networks can be achieved by using multiple channels and radios. By using different channels, two nodes can send packets at the same time without interfering with each other. To utilize diversity of available frequency, typically cards use channel-switching, which implies significant overhead in terms of delay. Assignment of which channels to use needs to be coupled with routing decisions as routing influences topology and traffic demands, which in turn impacts the channel assignment.</p><p>Routing algorithms for wireless mesh networks differ from routing algorithms that are used in wired networks. In wired networks, the number of hops is usually the only metric that matters. Wireless networks, on the other hand, must consider the quality of different links, as it is possible for a path with a larger amount of hops to be better than a path with fewer hops.</p><p>Typical routing protocols for wireless mesh networks such as Optimized Link State Routing (OLSR) use a single path to send packets from source to destination. This path is precomputed based on link state information received through control packets. The consideration of more information than hop-count in the routing process has shown to be beneficial as for example link quality and physical layer data rate determines the quality of the end-to-end path. In multi-channel mesh networks, also channel switching overhead and channel diversity need to be considered as a routing metric. However, a major drawback of current approaches is that a path is precomputed and used as long as the path is available and shows a good enough metric. As a result, short term variations on link quality or channel switching are not considered.</p><p>In this thesis, a new routing protocol is designed that provides a set of alternative forwarding candidates for each destination. To minimize delay (from both transmission and channel switching), a forwarding mechanism is developed to select one of the available forwarding candidates for each packet. The implementation was tested on an ARM based multi-radio platform, of which the results show that in a simple evaluation scenario the average delay was reduced by 22 % when compared to single path routing.</p>
14

Vertical Handoff between 802.11 and 802.16 Wireless Access Networks

Zhang, Yongqiang January 2008 (has links)
Heterogeneous wireless networks will be dominant in the next-generation wireless networks with the integration of various wireless access networks. Wireless mesh networks will become to a key technology as an economically viable solution for wide deployment of high speed, scalable and ubiquitous wireless Internet services. In this thesis, we consider an interworking architecture of wireless mesh backbone and propose an effective vertical handoff scheme between 802.11 and 802.16 wireless access networks. The proposed vertical handoff scheme aims at reducing handoff signaling overhead on the wireless backbone and providing a low handoff delay to mobile nodes. The handoff signaling procedure in different scenarios is discussed. Together with call admission control, the vertical handoff scheme directs a new call request in the 802.11 network to the 802.16 network, if the admission of the new call in the 802.11 network can degrade quality-of-service (QoS) of the existing real-time traffic flows. Simulation results demonstrate the performance of the handoff scheme with respect to signaling cost, handoff delay, and QoS support.
15

Vertical Handoff between 802.11 and 802.16 Wireless Access Networks

Zhang, Yongqiang January 2008 (has links)
Heterogeneous wireless networks will be dominant in the next-generation wireless networks with the integration of various wireless access networks. Wireless mesh networks will become to a key technology as an economically viable solution for wide deployment of high speed, scalable and ubiquitous wireless Internet services. In this thesis, we consider an interworking architecture of wireless mesh backbone and propose an effective vertical handoff scheme between 802.11 and 802.16 wireless access networks. The proposed vertical handoff scheme aims at reducing handoff signaling overhead on the wireless backbone and providing a low handoff delay to mobile nodes. The handoff signaling procedure in different scenarios is discussed. Together with call admission control, the vertical handoff scheme directs a new call request in the 802.11 network to the 802.16 network, if the admission of the new call in the 802.11 network can degrade quality-of-service (QoS) of the existing real-time traffic flows. Simulation results demonstrate the performance of the handoff scheme with respect to signaling cost, handoff delay, and QoS support.
16

Design and Implementation of Sequential Repair and Backup Routing Protocol for Wireless Mesh Network

Cheng, Chun-yao 11 August 2011 (has links)
In recent years, the applications of wireless mesh network in the embedded systems have become more widely. It's an important issue that how to consume lower energy and transfer data stably based on energy considerations. The embedded systems must have the appropriate routing protocol for low power consumption and stable long-distance data transmission. In this paper, a routing protocol is proposed with sequential repair and backup routing protocol(Ad Hoc On-Demand Distance Vector Routing-Sequential Repair and Backup Routing Protocol, AODV-SRBR Protocol), that can reduce the number of transceivers and have a stable connection. In the proposed routing protocol, the node of network can create multi-route message through decoding the path information of packets. Using a complete routing information can reduce the number of route request packets efficiently. when the link is broken, the proposed protocol can repair the data transmission by sequential repair or select backup routing. In this paper, we implement the routing protocol to verify a multi-hop connection and data transfer in the general environment. The performance of AODV-SRBR and AODV is compared and simulated by NS2. The proposed routing protocol can achieve same transmission efficiency in the fewer route request packets, fewer maintance packets and fewer transmit and receive times according to the simulation result. By stable connection¡Blow power consumption and multi-hop data transfer, we expect that the proposed routing protocol on the embedded systems platform can be extended in large sensor mesh network.
17

Long-range Communication Framework for Autonomous UAVs

Elchin, Mammadov 10 July 2013 (has links)
The communication range between a civilian Unmanned Aerial Vehicle (UAV) and a Ground Control Station (GCS) is affected by the government regulations that determine the use of frequency bands and constrain the amount of power in those frequencies. The application of multiple UAVs in search and rescue operations for example demands a reliable, long-range inter-UAV communication. The inter-UAV communication is the ability of UAVs to exchange data among themselves, thus forming a network in the air. This ability could be used to extend the range of communication by using a decentralized routing technique in the network. To provide this ability to a fleet of autonomous dirigible UAVs being developed at the University of Ottawa, a new communication framework was introduced and implemented. Providing a true mesh networking based on a novel routing protocol, the framework combines long-range radios at 900 MHz Industrial, Scientific and Medical (ISM) band with the software integrated into the electronics platform of each dirigible. With one radio module per dirigible the implemented software provides core functionalities to each UAV, such as exchanging flight control commands, telemetry data, and photos with any other UAV in a decentralized network or with the GCS. We made use of the advanced networking tools of the radio modules to build capabilities into the software for route tracing, traffic prioritization, and minimizing self-interference. Initial test results showed that without acknowledgements, packets can be received in the wrong order and cause errors in the transmission of photos. In addition, a transmission in a presence of a third broadcasting node slows down by 4-6 times. Based on these results our software was improved to control to flow of transmit data making the fragmentation, packetization, and reassembly of photos more reliable. Currently, using radios with half-wavelength dipole antennas we can achieve a one-hop communication range of up to 5 km with the radio frequency line-of-sight (RF LOS). This can be extended further by adding as many radio nodes as needed to act as intermediate hops.
18

Power characterisation of a Zigbee wireless network in a real time monitoring application

Prince-Pike, Arrian January 2009 (has links)
Zigbee is a relatively new wireless mesh networking standard with emphasis on low cost and energy conservation. It is intended to be used in wireless monitoring and control applications such as sensors and remotely operated switches where the end devices are battery powered. Because it is a recent technology there is not sufficient understanding on how network architecture and configuration affect power consumption of the battery powered devices. This research investigates the power consumption and delivery ratio of Zigbee wireless mesh and star networks for a single sink real time monitoring system at varying traffic rates and the beacon and non beacon mode operation of its underlying standard IEEE 802.15.4 in the star network architecture. To evaluate the performance of Zigbee, the network operation was simulated using the simulation tool NS-2. NS-2 is capable of simulating the entire network operation including traffic generation and energy consumption of each node in the network. After first running the simulation it was obvious that there were problems in the configuration of the simulator as well as some unexpected behaviour. After performing several modifications to the simulator the results improved significantly. To validate the operation of the simulator and to give insight on the operation of Zigbee, a real Zigbee wireless network was constructed and the same experiments that were conducted on the simulator were repeated on the Zigbee network. The research showed that the modified simulator produced good results that were close to the experimental results. It was found that the non beacon mode of operation had the lowest power consumption and best delivery ratio at all tested traffic rates. The operation of Zigbee mesh and star networks were compared to the results for IEEE 802.15.4 star networks in non beacon mode which revealed that the extra routing traffic sent by the Zigbee networking layers does contribute significantly to the power consumption, however even with the extra routing traffic, power consumption is still so low that it the battery life of the device would be limited by the shelf life of the battery, not by the energy consumption of the device. This research has successfully achieved its objectives and identified areas for future development. The simulator model for NS-2 could be improved to further increase the accuracy of the results as well as include the Zigbee routing layers and the experimental results could be improved by a more accurate power consumption data acquisition method.
19

Power characterisation of a Zigbee wireless network in a real time monitoring application

Prince-Pike, Arrian January 2009 (has links)
Zigbee is a relatively new wireless mesh networking standard with emphasis on low cost and energy conservation. It is intended to be used in wireless monitoring and control applications such as sensors and remotely operated switches where the end devices are battery powered. Because it is a recent technology there is not sufficient understanding on how network architecture and configuration affect power consumption of the battery powered devices. This research investigates the power consumption and delivery ratio of Zigbee wireless mesh and star networks for a single sink real time monitoring system at varying traffic rates and the beacon and non beacon mode operation of its underlying standard IEEE 802.15.4 in the star network architecture. To evaluate the performance of Zigbee, the network operation was simulated using the simulation tool NS-2. NS-2 is capable of simulating the entire network operation including traffic generation and energy consumption of each node in the network. After first running the simulation it was obvious that there were problems in the configuration of the simulator as well as some unexpected behaviour. After performing several modifications to the simulator the results improved significantly. To validate the operation of the simulator and to give insight on the operation of Zigbee, a real Zigbee wireless network was constructed and the same experiments that were conducted on the simulator were repeated on the Zigbee network. The research showed that the modified simulator produced good results that were close to the experimental results. It was found that the non beacon mode of operation had the lowest power consumption and best delivery ratio at all tested traffic rates. The operation of Zigbee mesh and star networks were compared to the results for IEEE 802.15.4 star networks in non beacon mode which revealed that the extra routing traffic sent by the Zigbee networking layers does contribute significantly to the power consumption, however even with the extra routing traffic, power consumption is still so low that it the battery life of the device would be limited by the shelf life of the battery, not by the energy consumption of the device. This research has successfully achieved its objectives and identified areas for future development. The simulator model for NS-2 could be improved to further increase the accuracy of the results as well as include the Zigbee routing layers and the experimental results could be improved by a more accurate power consumption data acquisition method.
20

Design and Performance Analysis of Fiber Wireless Networks

January 2015 (has links)
abstract: A Fiber-Wireless (FiWi) network integrates a passive optical network (PON) with wireless mesh networks (WMNs) to provide high speed backhaul via the PON while offering the flexibility and mobility of a WMN. Generally, increasing the size of a WMN leads to higher wireless interference and longer packet delays. The partitioning of a large WMN into several smaller WMN clusters, whereby each cluster is served by an Optical Network Unit (ONU) of the PON, is examined. Existing WMN throughput-delay analysis techniques considering the mean load of the nodes at a given hop distance from a gateway (ONU) are unsuitable for the heterogeneous nodal traffic loads arising from clustering. A simple analytical queuing model that considers the individual node loads to accurately characterize the throughput-delay performance of a clustered FiWi network is introduced. The accuracy of the model is verified through extensive simulations. It is found that with sufficient PON bandwidth, clustering substantially improves the FiWi network throughput-delay performance by employing the model to examine the impact of the number of clusters on the network throughput-delay performance. Different traffic models and network designs are also studied to improve the FiWi network performance. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2015

Page generated in 0.0736 seconds