• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analyse multifactorielle de la dérive vers l'usure des outillages de frappe à froid / Multifactorial analysis of cold forging tools deteriorating toward wear

Debras, Colin 21 July 2016 (has links)
Les matrices en carbure de Tungstène et Cobalt (WC‐Co) sont utilisées dans les procédés de frappe à froid de l’acier pour leur exceptionnelle capacité à résister aux phénomènes d’usure. Ces travaux ont pour objectif de mieux comprendre les mécanismes complexes qui entrainent finalement la dérive des matrices vers l’état usé. Cette complexité vient des liens étroits entre la microstructure et les propriétés mécaniques macroscopiques de ces matériaux. Pour la compréhension des mécanismes de dérive vers l’usure, une stratégie de travail en quatre étapes est établie. La première étape est le prélèvement de matrices de frappe, avec différentes durées de vie, directement sur la chaîne de production. La deuxième étape est l’identification de la rhéologie. Elle s’accompagne de la modélisation numérique du procédé de frappe pour calculer le champ des contraintes et des déformations plastiques. La troisième étape est la caractérisation localisée de l’évolution de la surface selon trois axes : les propriétés tribologiques, morphologiques, et mécaniques. On quantifie ainsi la dégradation progressive des conditions de contact corrélée avec une fragilisation des surfaces et la décohésion de grains de carbures WC. Pour comprendre les mécanismes qui conduisent à la décohésion de grains, une stratégie de modélisation numérique à l'échelle mésomécaniques 2D est mise en place. L’énergie de rupture entre un grain et le reste du matériau est modélisée par des éléments cohésifs. Ces modèles montrent que la sensibilité de chaque grain à l’arrachement dépend non seulement des conditions de contact et de la ténacité du matériau, mais également de la taille et de la configuration du grain au voisinage de la surface. / Tungsten carbide and Cobalt (WC‐Co) dies are used for cold forming processes of steel because of their exceptional performances in resisting wear phenomena. This work aims to a better understanding of the complex damage mechanisms that eventually cause wear. This complexity comes from the existing relationships between their microstructure and their macroscopic mechanical properties. For a better understanding of the damage mechanisms leading towards wear, a four‐step strategy is presented. The first step is the cold heading dies sampling directly on the production line. They are collected at different lifetimes. The second step is the identification of the die rheology. It is followed by numerical modeling of the forging process to calculate the stress field and plastic strain magnitude. The third step is to characterize the local evolution of the surface properties along three axes: the tribological, the morphological and mechanical aspects. These analyses quantify the progressive decrease of contact conditions correlated with surface embrittlement and WC carbide grains debonding. To understand the mechanisms that lead to the grains debonding, a set of 2D mesoscale contact models are performed. The fracture energy between a WC grain and the rest of the material is computed using cohesive elements. These models show that the sensitivity to debonding depends not only on the contact conditions and the material fracture toughness, but also on the grain size and grain configuration in the vicinity of the surface.
12

Multi-scale Modelling of Lamellar Mesophases

Jaju, S J January 2017 (has links) (PDF)
Surfactants are amphiphilic molecules which self-assemble at the interface in oil-water-surfactant mixtures such that the hydrophobic part, called tail, stays in oil and the remaining part, called head, resides in hydrophilic en-vironment. Depending upon concentration of individual components, these mixtures form several microphases, such as bilayers, micelles, columnar and lamellar phases. A lamellar phase, at equilibrium, is made up of alternat-ing layers of water and oil separated by surfactants, or of alternate layers of water and surfactant bilayers such that the hydrophilic heads are in contact with water. This equilibrium state is rarely achieved in macroscopic samples due to thermodynamic and kinetic constraints; instead, a lamellar fluid is usually disordered with a large number of defects. These defects have significant effect on the flow behaviour of the lamellar mesophase systems. They are known to alter the flow field, resulting stresses and in turn could get distorted or annihilated by the flow. In present work, we analyse this two way coupling between lamellar structure and flow field. The structural and rheological evolution of an initially disordered lamellar phase system under a shear flow is examined using a mesoscale model based on a free energy functional for the concentration field, which is the scaled difference in the concentration between the hydrophilic and hydrophobic components. Two distinct modes of structural evolution are observed depending only on Peclet number, which ratio of inertial forces to mass diffusivity, in-dependent of system size. At low Peclet number, local domains are formed which are then rotated and stretched by shear. A balance between defect creation and annihilation is reached due to which the system never reaches the equilibrium layer configuration. In the opposite limit, partially formed layers break and reform so as to form a nearly aligned lamellar phase con-figuration with residual defects. Viscosity of lamellar phase system increases with layer moduli, differences in viscosity of individual components, fluidity of the lamellae due to shear banding and defect pinning. These factors however, do not have any effect on alignment mechanism.

Page generated in 0.0561 seconds