• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Can A Vegetarian Diet Affect Resting Metabolic Rate or Satiety: A Pilot Study Utilizing a Metabolic Cart and the SenseWear Armband

January 2012 (has links)
abstract: Dietary protein is known to increase postprandial thermogenesis more so than carbohydrates or fats, probably related to the fact that amino acids have no immediate form of storage in the body and can become toxic if not readily incorporated into body tissues or excreted. It is also well documented that subjects report greater satiety on high- versus low-protein diets and that subject compliance tends to be greater on high-protein diets, thus contributing to their popularity. What is not as well known is how a high-protein diet affects resting metabolic rate over time, and what is even less well known is if resting metabolic rate changes significantly when a person consuming an omnivorous diet suddenly adopts a vegetarian one. This pilot study sought to determine whether subjects adopting a vegetarian diet would report decreased satiety or demonstrate a decreased metabolic rate due to a change in protein intake and possible increase in carbohydrates. Further, this study sought to validate a new device called the SenseWear Armband (SWA) to determine if it might be sensitive enough to detect subtle changes in metabolic rate related to diet. Subjects were tested twice on all variables, at baseline and post-test. Independent and related samples tests revealed no significant differences between or within groups for any variable at any time point in the study. The SWA had a strong positive correlation to the Oxycon Mobile metabolic cart but due to a lack of change in metabolic rate, its sensitivity was undetermined. These data do not support the theory that adopting a vegetarian diet results in a long-term change in metabolic rate. / Dissertation/Thesis / M.S. Nutrition 2012
2

Incorporating Excess Post-exercise Oxygen Consumption into Accelerometer Energy Expenditure Estimation Algorithms

Remillard, Nicholas 28 October 2022 (has links)
Accelerometers are objective monitors of physical activity (PA) that can be used to estimate energy expenditure (EE). Most accelerometer EE estimation equations are based on steady-state data and do not consider excess post-exercise oxygen consumption (EPOC) after exercise. PURPOSE: To quantify the error in accelerometer EE estimates due to EPOC after varying durations of high-intensity treadmill running. METHODS: Nine young, healthy, recreationally active males participated in three study visits. Visit 1 included a treadmill VO2 peak test to determine the treadmill speed correlating to 80% VO2 peak for visits 2 and 3. Visit 2 included a seated 20-min baseline and three short (30s, 60s, 120s) vigorous treadmill running bouts each followed by 20 minutes of seated rest. Visit 3 included a supine 60-min baseline and a 30-min treadmill running bout followed by 3 hours of supine rest. Twelve EE estimation equations each using either a non-dominant wrist or right hip ActiGraph GT3X+ accelerometer were compared to the true EE measured by the Parvomedics TrueOne 2400 indirect calorimeter. RESULTS: The Freedson 1998 EE estimation equation overestimated EE during the 20min post-exercise period after each exercise bout (mean kCals [95% CIs]; 30s: 19.3 [11.4, 27.2], 60s: 16.6 [8.5, 24.7], 120s: 13.4 [5.74, 21.1], 30min: 15.1 [6.69, 23.5]). The Crouter 2009 branching algorithm underestimated EE during the 20min post-exercise period after each exercise bout (mean kCals [95% CIs]; 30s: -8.59 [-10.6, -6.62], 60s: -11.6 [-13.7, -9.38], 120s: -15.0 [-18.1, -11.8], 30min: -11.0 [-14.3, -7.77]), but was partially corrected by adding in the measured EPOC. CONCLUSION: Estimated EE during lying or seated rest from linear accelerometer equations was heavily dependent on the y-intercept of the equation, which represents the estimated resting EE of the wearer, with the Crouter calibration study being the only one to directly measure resting EE. More sophisticated approaches, like the Crouter 2009 and newer machine learning algorithms, have better potential to more accurately estimate EE across various activity types. New accelerometer EE estimations should include resting in their calibration protocols in order to more accurately estimate EE during rest.

Page generated in 0.0531 seconds