• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 7
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Carbonic anhydrase II promotes cardiomyocyte hypertrophy

Brown, Brittany Fielding Unknown Date
No description available.
2

Caractérisation fonctionnelle de gènes impliqués dans le développement du pollen chez Arabidopsis thaliana / Functional characterisation of genes involved in pollen development in Arabidopsis thaliana

Lallemand, Benjamin 19 October 2012 (has links)
Le polymère de sporopollénine est un constituant majeur de l’exine, la partie externe de la paroi du grain de pollen. Son exceptionnelle résistance permet de les protéger des stress environnementaux de nature mécanique ou chimique. Il constitue une des clefs de la colonisation du milieu terrestre par les plantes. Au cours de ma thèse, j’ai caractérisé deux Polykétide Synthases (PKS-A et PKS-B) et deux Tétrakétide α-Pyrone Réductases (TKPR1 et TKPR2) d’Arabidopsis thaliana. Par immunolocalisation, hybridation in situ et des études de microscopie j’ai montré que ces protéines intervenaient dans la synthèse de la paroi pollinique. In vitro, les deux PKS catalysent la condensation de 2 ou 3 molécules de malonyl-CoA sur différents esters de CoA d’acide gras pour former les tri et tétrakétide α-pyrones correspondants, substrat de TKPR1 et TKPR2. In vitro, celles-ci réduisent la fonction cétone en alcool secondaire formant des composés hydroxylés, précurseurs du polymère de sporopollénine. Dans les cellules du tapétum, la synthèse des monomères de sporopollénine se déroule en quelques heures seulement. Par immunodétection et en fusionnant les protéines à la GFP, j’ai montré que ces enzymes se trouvent à la surface du réticulum endoplasmique à l’exception de TKPR2. Des expériences de HIS-pull-down, de FLIM-FRET et de double hybride nous ont ensuite permis de suggérer que ces protéines forment un métabolon. L’identification de gènes homologues dans de nombreuses espèces végétales y compris une mousse révèle que nous avons identifié une voie métabolique très ancienne conservée au sein des angiospermes. / .onferes a high degree of resistance to various mechanical and chemical stresses. During the evolution, this properties enabled the plant to adapat to land conditions. We caracterized two Polyketide Sythases (PKSA and PKSB) and two Tetraketide -pyrone Reductases (TKPR1 and TKPR2). By immunolocalisation, in situ hybridization and microscopy analysis we showed those proteins are involved in the pollen wall synthesis.We investigated the in vitro activity of the recombinant proteins and showed that the two PKS catalyzed the condensation of 2 or 3 malonyl-CoA with various fatty acid CoA esters, producing the corresponding tri and tetraketides. We also demonstrated that the tetraketides produced by PKS were substrates of the TKPR1 and TKPR2. In vitro, they reduced the cetone function of the lateral chain to a secondary alcohol forming hydroxylated compounds involved in the polymerization of sporopollenin.In tapetum cells, the synthesis of sporopollenin monomers is achieved in a few hours. To explain the underlying metabolic rate, I studied the cellular organization of the metabolic pathway. By immunodetection and GFP fusion experiments I localized PKSA, PKSB and TKPR1 to the endoplasmic reticulum while TKPR2 was mainly cytosolic. Then, interaction studies by HIS pull-down, FLIM-FRET and double hybride experiments showed the occurrence of a metabolon localized to the ER. Finally, by phylogenetic analysis, we showed the conservation of the genes involved in sporopollenin biosynthesis pathway, from mosses to higher plants.
3

pH changes localized to the surface of membrane transport proteins

Johnson, Danielle Elaine 06 1900 (has links)
Intracellular pH was monitored at the cytosolic surface of plasma membrane solute transporters (Na+/H+/nucleoside co-transporters, or Cl-/HCO3- exchangers), using pH-sensitive fluorescent proteins (FPs), dual emission green FP (deGFP4) and a monomeric red FP Nectarine (mNect), whose development and characterization are also reported here. Human concentrative nucleoside transporter, hCNT3, mediates Na+/H+/nucleoside co-transport. We describe a new approach to monitor H+/uridine co-transport in HEK293 cells. pH changes at the intracellular surface of hCNT3 were monitored by fusing mNect to the cytoplasmic N-terminus of hCNT3 (mNect.hCNT3) or an inactive hCNT3 mutant (mNect.hCNT3-F563C). Cells were incubated at the permissive pH for H+-coupled nucleoside transport, pH 5.5, under both Na+-free and Na+-containing conditions. In mNect.hCNT3-expressing cells (but not under negative control conditions) the rate of acidification increased in media containing 0.5 mM uridine, providing the first direct evidence for H+-coupled uridine transport. At pH 5.5, there was no significant difference in uridine transport rates (coupled H+ flux) in the presence or absence of Na+. This suggests that in acidic Na+-containing conditions, 1 Na+ and 1 H+ are transported/uridine molecule, while in acidic Na+-free conditions, 1 H+ alone is transported/uridine. In acid environments, including renal proximal tubule and intestine, H+/nucleoside co-transport may drive nucleoside accumulation by hCNT3. Microdomains, discrete regions of altered cytosolic solute concentration, are enhanced by rapid solute transport and slow diffusion rates. pH-regulatory membrane transporters, like the Cl-/HCO3- exchanger AE1, could nucleate H+ microdomains, since AE1 has a rapid transport rate and cytosolic H+ diffusion is slow. As AE1 drives Cl-/HCO3- exchange, differences in pH, near and remote from AE1, were monitored simultaneously by deGFP4 fused to AE1 (deGFP4.AE1) and mNect.hCNT3-F563C. deGFP4.AE1-mNect.hCNT3-F563C distance was varied by co-expression of different amounts of the two proteins in HEK293 cells. As the deGFP4.AE1-mNect.hCNT3-F563C distance increased, mNect.hCNT3-F563C detected the cytosolic pH change with a time delay and reduced rate of pH change, compared to deGFP4.AE1. Carbonic anhydrase activity was essential for H+ microdomain formation. H+ diffusion along the plasma membrane was 60-fold slower than to the cytosolic ER-surface. During physiological HCO3- transport, a H+ microdomain 0.3 µm in diameter develops around AE1, which will affect nearby pH-sensitive processes.
4

pH changes localized to the surface of membrane transport proteins

Johnson, Danielle Elaine Unknown Date
No description available.
5

Investigation of a Possible Multi-enzyme Complex Involved in Nicotine Biosynthesis in Roots of Tobacco (Nicotiana tabacum)

Heim, William 18 September 2003 (has links)
N-methylputrescine oxidase (MPO) is a member of the diamine oxidase (DAO) class of enzymes believed to be responsible for synthesis of the alkaloid nicotine in the roots of Nicotiana tabacum (Mizusaki et al., 1972). A purportedly pure MPO protein from tobacco root culture extracts was used to generate immune antiserum in rabbits (McLauchlan et al., 1993). In an attempt to clone a cDNA encoding MPO, we used this antiserum to screen a tobacco cDNA expression library. Unexpectedly, two previously unreported genes with strong homology to members of a gene family encoding S-adenosylhomocysteine hydrolase (SAHH) in N. sylvestris and a gene encoding SAHH in N. tabacum were cloned instead. SAHH is an enzyme of the S-adenosylmethionine (SAM) recycling pathway, which also includes SAM synthetase (SAMS) and methionine synthase (MS). These results led to the hypothesis of a multi-enzyme complex, or metabolon, of at least one member of the nicotine biosynthesis pathway, i.e., MPO, and at least one member of the SAM recycling pathway, i.e., SAHH, during nicotine biosynthesis. Metabolons are stable noncovalent complexes in cells that ensure sufficient passage of the product of one enzyme reaction to the next enzyme in the pathway via a "channel" without equilibrating with the bulk solution (Ovádi, 1991). My research employed co-immunoprecipitation studies to determine if other SAM recycling enzymes are associated in a complex with MPO and SAHH, as well as Northern and Western blot analyses to determine if the genes encoding SAM recycling pathway enzymes are coordinately regulated during nicotine biosynthesis. Our results indicate that nicotine biosynthesis-inducing conditions result in differential mRNA accumulation patterns of the three enzymes of the SAM recycling pathway, although to different extents. However, protein levels of SAM recycling pathway members do not appear to reflect the differential mRNA accumulation patterns. We have firmly established an association of SAHH and an enzyme with DAO activity, purportedly MPO. If the enzyme is proven to be MPO, then our data would constitute the first documentation of an alkaloid metabolon. Finally, using a degenerate primer PCR approach, we have cloned a 986-bp gene fragment with homology to copper amine oxidases, the class to which MPO belongs. / Master of Science
6

Carctérisation fonctionnelle de gènes impliqués dans le développement du pollen chez Arabidopsis thaliana

Lallemand, Benjamin 19 October 2012 (has links) (PDF)
Le polymère de sporopollénine est un constituant majeur de l'exine, la partie externe de la paroi du grain de pollen. Son exceptionnelle résistance permet de les protéger des stress environnementaux de nature mécanique ou chimique. Il constitue une des clefs de la colonisation du milieu terrestre par les plantes. Au cours de ma thèse, j'ai caractérisé deux Polykétide Synthases (PKS-A et PKS-B) et deux Tétrakétide α-Pyrone Réductases (TKPR1 et TKPR2) d'Arabidopsis thaliana. Par immunolocalisation, hybridation in situ et des études de microscopie j'ai montré que ces protéines intervenaient dans la synthèse de la paroi pollinique. In vitro, les deux PKS catalysent la condensation de 2 ou 3 molécules de malonyl-CoA sur différents esters de CoA d'acide gras pour former les tri et tétrakétide α-pyrones correspondants, substrat de TKPR1 et TKPR2. In vitro, celles-ci réduisent la fonction cétone en alcool secondaire formant des composés hydroxylés, précurseurs du polymère de sporopollénine. Dans les cellules du tapétum, la synthèse des monomères de sporopollénine se déroule en quelques heures seulement. Par immunodétection et en fusionnant les protéines à la GFP, j'ai montré que ces enzymes se trouvent à la surface du réticulum endoplasmique à l'exception de TKPR2. Des expériences de HIS-pull-down, de FLIM-FRET et de double hybride nous ont ensuite permis de suggérer que ces protéines forment un métabolon. L'identification de gènes homologues dans de nombreuses espèces végétales y compris une mousse révèle que nous avons identifié une voie métabolique très ancienne conservée au sein des angiospermes.
7

Étude par modélisation moléculaire de systèmes multienzymatiques impliqués dans la biosynthèse des flavonoïdes / Molecular modeling study of multienzymatic systems involved in flavonoid biosynthesis

Diharce, Julien 04 December 2014 (has links)
Les flavonoïdes, molécules naturelles possédant des propriétés antiradicalaires et antioxydantes, sont produits au cours de cascades enzymatiques impliquant plusieurs enzymes. Il a récemment été proposé que certaines de ces enzymes s'assembleraient pour former un complexe multienzymatique transitoire, appelé métabolon, ancré à la membrane cellulaire. Cette structure rendrait possible des phénomènes de transfert direct de métabolites d'un site actif à l'autre (substrate channeling), réduisant ainsi les temps de diffusion et minimisant les effets de solvatation/désolvatation du substrat. L'objectif de ce travail est de proposer un premier modèle de ce type de complexe, impliquant trois enzymes de la biosynthèse des flavonoïdes : la dihydroflavonol-4-réductase (DFR), la flavonoïd-3'-hydroxylase (F3’H) et la leucoanthocyanidine réductase (LAR). L'étude de ces complexes moléculaires requiert la mise en œuvre d'une méthodologie multi-échelles basée sur l’utilisation i) de méthodes hybrides QM/MM pour l'étude de la réactivité enzymatique, ii) de simulations de dynamique moléculaire à résolution atomique se déroulant sur des échelles de temps de l'ordre de la microseconde pour estimer des propriétés thermodynamiques et cinétiques, iii) de calculs de docking protéine-protéine en résolution gros grain. L'application des différents niveaux de théorie nous a permis d'établir un premier modèle de métabolon à trois enzymes en interaction avec une membrane cellulaire. / Flavonoids, some natural compounds exhibiting antioxidant properties, are synthesized along enzymatic cascades involving several enzymes. It has been recently proposed that some of these enzymes are involved in the formation of large transient macromolecular edifices, called metabolon, interacting with cellular membrane. Such molecular complexes should allow direct metabolites transfer from one active site to the other (substrate channeling phenomenon), minimizing diffusion time and solvation effects. The present work aims to establish a first model of a metabolon involving 3 enzymes of the flavonoid biosynthesis: the dihydroflavonol 4-reductase (DFR), the flavonoid 3'-hydroxylase (F3'H) and the leucoanthocyanidin reductase (LAR). The study of such large molecular system requires a multiscale approach based on i) hybrid QM/MM methods to decipher enzymatic mechanism, ii) molecular dynamic simulations in microsecond timescale to estimate thermodynamic and kinetic properties and iii) protein-protein docking at coarse-grained resolution. These different levels of theory allow us to establish a first model of a three-enzymes-metabolon in interaction with a model of cellular membrane.

Page generated in 0.0599 seconds