• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electronic Structure And Bonding In Metallaboranes And Main Group Compounds

Hari Krishna Reddy, Kurre 10 1900 (has links) (PDF)
This thesis entitled “Electronic Structure and Bonding in Metallaboranes and Main Group Compounds” consists of five chapters. Chapter 1 gives an exposition of concepts and techniques used in understanding the electronic structure and bonding in some chemically interesting molecules. Heuristics concepts like isolobal analogy and electron counting rules are used in analyzing and predicting some novel chemical systems. A brief description of computational techniques such as density functional theory (DFT) based methods are used to quantitatively examine the structures and energies of these systems. In chapter 2 we present a critical analysis of bonding in neutral and dianionic stannadiphospholes and compare the potential energy surfaces with the isoelectronic Cp+ and Cp- species. The analysis indicates that Sn can be a better isolobal analogue to P+ than to BH or CH+. In chapter 3 we present new strategy to stabilize B2H4 in planar configuration using transition metal fragments. This requires the metal to donate two electrons into the empty B-B π orbital. Such complexes present a unique case study to the classical DCD model of metal-π complex. In chapter 4 we study the bonding in some recently synthesized metallaboranes which does not follow conventional electron counting rules. The complex and non-canonical nature of these metallaboranes feature some unique bonding patterns which are elucidated using theoretical techniques. In the final chapter we present new approach to build metal coated boron fullerenes. We use electron counting rules to device new structures which show enhanced metal boron bonding.

Page generated in 0.1015 seconds